Câu hỏi:

07/07/2022 295 Lưu

Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Tam giác ABC có AC = 3 căn bậc hai 3, AB = 3, BC = 6 (ảnh 1)

Áp dụng hệ quả của định lý côsin, ta có: \[\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]

\[ \Leftrightarrow \cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2AB.BC}} = \frac{{{6^2} + {3^2} - {{\left( {3\sqrt 3 } \right)}^2}}}{{2.6.3}} = \frac{1}{2} \Rightarrow \widehat B = 60^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Áp dụng định lí Côsin tại đỉnh A ta có: a2 = b2 + c2 – 2bc.cosA

\[ \Rightarrow \]a2 = b2 + c2 – 2bc.cos120° = b2 + c2 + bc.

Câu 2

Lời giải

Đáp án đúng là: B

Ta có sin2α + cos2α = 1

sin2α = 1 – cos2α = 1 – \({\left( { - \frac{4}{5}} \right)^2}\)= 1 – \(\frac{{16}}{{25}}\)= \(\frac{9}{{25}}.\)

\(\left[ \begin{array}{l}\sin \alpha = \frac{3}{5}\\\sin \alpha = - \frac{3}{5}\end{array} \right.\)

90° < α < 180° nên sinα > 0. Do đó \(\sin \alpha = \frac{3}{5}\)

tanα = \(\frac{{\sin \alpha }}{{cos\alpha }} = - \frac{3}{4}\), cotα = \(\frac{{co{\mathop{\rm s}\nolimits} \alpha }}{{\sin \alpha }} = - \frac{4}{3}\).

Vậy đáp án đúng là B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP