Câu hỏi:

07/07/2022 1,888 Lưu

Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).

A. C = 150°;

B. C = 120°;

C. C = 60°;

D. C = 30°.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: a(a2 – c2) = b(b2 – c2)

a3 – b3 – c2(a – b) = 0

(a – b)(a2 + ab + b2) – c2(a – b) = 0

(a – b)(a2 + ab + b2 – c2) = 0

a2 + ab + b2 – c2 = 0 (Vì a ≠ b nên a – b ≠ 0)

a2 + b2 – c2 = – ab

Ta có \[\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{ - ab}}{{2ab}}\]\[ = - \frac{1}{2}\].

Do đó: \(\widehat C\) = 120°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. a2 = b2 + c2 – 3bc;

B. a2 = b2 + c2 + bc;

C. a2 = b2 + c2 + 3bc;

D. a2 = b2 + c2 – bc.

Lời giải

Đáp án đúng là: B

Áp dụng định lí Côsin tại đỉnh A ta có: a2 = b2 + c2 – 2bc.cosA

\[ \Rightarrow \]a2 = b2 + c2 – 2bc.cos120° = b2 + c2 + bc.

Câu 2

A. sin(α) > 0; cos(α) > 0;

B. sin(α) > 0; cos(α) < 0;

C. sin(α) < 0; cos(α) > 0;

D. sin(α) < 0; cos(α) < 0.

Lời giải

Đáp án đúng là: B

90° < α < 180° (Góc phần tư thứ 2) nên sin(α) > 0; cos(α) < 0.

Câu 3

A. \[\cot \alpha = \frac{4}{3}\];

B. \[\sin \alpha = \frac{3}{5}\];

C. \[\tan \alpha = \frac{4}{5}\].

D. \[\sin \alpha = - \frac{3}{5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1;

B. 0;

C. – 1;

D. Không xác định.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{2}{7}\);

B. \(\frac{1}{7}\);

C. \(\frac{{5 - \sqrt 6 }}{{6 + \sqrt 3 }}\);

D. \(\frac{7}{{13}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \frac{4}{9}\);

B. \(\frac{4}{{19}}\);

C. \( - \frac{4}{{19}}\);

D. \(\frac{4}{9}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP