Câu hỏi:
07/07/2022 1,501Cho parabol y = ax2 + bx – 3. Xác định hệ số a, b biết parabol có đỉnh
I(– 1; – 5)
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Tọa độ đỉnh của parabol là \[{\rm{I}}\left( { - \frac{{\rm{b}}}{{{\rm{2a}}}}{\rm{;}} - \frac{{\rm{\Delta }}}{{{\rm{4a}}}}} \right)\]
Ta có
\[\left\{ \begin{array}{l}--\frac{b}{{2a}} = - 1\\ - \frac{{{b^2} - 4ac}}{{4a}} = - 5\\a \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2a\\4{a^2} - 8a = 0\\{\rm{a}} \ne {\rm{0}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2a\\\left[ \begin{array}{l}a = 0\\a = 2\end{array} \right.\\{\rm{a}} \ne {\rm{0}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 4\end{array} \right.\]
Vậy a = 2 và b = 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Câu 3:
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Câu 4:
Cho hàm số y = f(x). Biết f(x + 2) = x2 – 3x + 2 thì f(x) bằng:
Câu 5:
Biết rằng P: y = ax2 + bx + 2 (a > 1) đi qua điểm M(–1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\). Tính tích P = a.b.
Câu 6:
Parabol y = ax2 + bx + c đạt giá trị nhỏ nhất bằng 4 tại x = – 2 và đi qua
A(0; 6) có phương trình là
về câu hỏi!