Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt cực đại bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A(0; – 1). Tính tổng S = a + b + c.
A. S = – 1;
B. S = – 4;
C. S = 4;
D. S = 2.
Quảng cáo
Trả lời:

Đáp án đúng là: D
Vì hàm số đạt cực đại tại x = 2 nên bề lõm của parabol quay xuống dưới, do đó a < 0.
Từ giả thiết ta có hệ \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\ - \frac{\Delta }{{4a}} = 3\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\{b^2} - 4ac = - 12a\\c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\16{a^2} + 16a = 0\\c = - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 0\\c = - 1\end{array} \right.\)(loại) hoặc \(\left\{ \begin{array}{l}a = - 1\\b = 4\\c = - 1\end{array} \right.\) (thỏa mãn)
Vậy S = – 1 + 4 + (– 1) = 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. P = – 3;
B. P = – 2;
C. P = 192;
D. P = 28.
Lời giải
Đáp án đúng là: C
Vì P đi qua điểm M(– 1; 6) và có tung độ đỉnh bằng \( - \frac{1}{4}\) nên ta có hệ
\( \Leftrightarrow \left\{ \begin{array}{l}a = 16\\b = 12\end{array} \right.\) (thỏa mãn a > 1) hoặc \(\left\{ \begin{array}{l}a = 1\\b = - 3\end{array} \right.\) (loại).
Suy ra P = a.b = 16.12 = 192.
Đáp án đúng là C.
Lời giải
Đáp án đúng là: A
Trục đối xứng \[{\rm{x}}\,{\rm{ = }}\,--\frac{{\rm{b}}}{{{\rm{2a}}}}{\rm{ = }}--\frac{{--\,{\rm{4}}}}{{\rm{2}}}{\rm{ = }}\,{\rm{2}}\].
Câu 3
A. \[y = \frac{1}{2}{x^2} + 2x + 6\];
B. y = x2 + 2x + 6;
C. y = \(\frac{1}{2}\)x2 + 6x + 6;
D. y = x2 + x + 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Hàm số đồng biến trên khoảng (0; + ∞);
B. Hàm số đồng biến trên khoảng (– ∞; 1);
C. Hàm số nghịch biến trên khoảng (– ∞; 0);
D. Hàm số nghịch biến trên khoảng (– ∞; 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. y = f(x) = x2 + 7x – 12;
B. y = f(x) = x2 – 7x – 12;
C. y = f(x) = x2 + 7x + 12;
D. y = f(x) = x2 – 7x + 12.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.