Câu hỏi:

13/07/2024 554

Giải các phương trình sau:

a) 7 + 2x = 22 – 3x;

b) (x – 2)(2x + 5) = 0;  

c) x20182019+x20192020x40412021=0 .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 7 + 2x = 22 – 3x

Û 2x + 3x = 22 – 7

Û 5x = 15

Û x = 15 : 5

Û x = 3

Vậy nghiệm của phương trình là x =3;

b) (x – 2)(2x + 5) = 0; 

x2=02x+5=0x=22x=5x=2x=52

Vậy tập nghiệm của phương trình đã cho là S=2;52 ;

c) x20182019+x20192020x40412021=0

x20182019+1+x20192020+1x404120212=0x20182019+1+x20192020+1x40412021+2=0x2018+20192019+x2019+20202020x4041+2.20212021=0

x+12019+x+12020x+12021=0(x+1)12019+1202012021=0x+1=012019+1202012021=0

12020>12021  nên 1202012021>0

Suy ra 12019+1202012021>0  hay 12019+12020120210 .

Do đó phương trình đã cho tương đương với:

x + 1 = Û x = – 1.

Vậy nghiệm của phương trình đã cho là S = { – 1}.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A và có đường cao AH. a) Chứng minh ∆HBA đồng dạng ∆ABC. (ảnh 1)

a) Xét ∆HBA và ∆ABC có:

ABC^ chung

BHA^=BAC^=90o (vì AH là đường cao của ∆ABC)

Do đó ∆HBA  ∆ABC (g.g).

b) Áp dụng định lý Py-ta-go trong ∆ABC vuông tại A có:

BC2 = AB2 + AC2 = 62 + 82 = 100

Suy ra BC = 10 cm.

Ta có ∆ABC vuông tại A. Khi đó diện tích tam giác ABC là:

SABC = 12 AB.AC = 12.6.8 = 24 (cm2)

Mặc khác, ∆ABC có AH là đường cao kẻ từ A ứng với cạnh BC nên ta có:

SABC = 12 AH.BC = 24

AH=2SABCBC=2.2410=4,8 (cm)

Xét ∆HBA vuông tại H, áp dụng định lý Py-ta-go, ta có:

AB2 = AH2 + HB2

Suy ra HB2 = AB2 – AH2 = 62 – 4,82 = 12,96.

Do đó HB = 3,6 cm.

Ta có: BC = BH + CH

Suy ra CH = BC – BH = 10 – 3,6 = 6,4 (cm).

Vậy độ dài BC, AH, BH và CH lần lượt là: 10 cm; 4,8 cm; 3,6 cm và 6,4 cm.

Câu 2

Phương trình 2x – 5 = 7 có nghiệm là:

Lời giải

Đáp án đúng là: B

Giải phương trình đã cho như sau:

2x – 5 = 7

Û 2x = 7 + 5

Û 2x = 12

Û x = 12 : 2

Û x = 6

Vậy nghiệm của phương trình đã cho là x = 6.

Câu 4

Tập hợp nghiệm của phương trình x+13x3=0  là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Nếu ∆A’B’C  ∆ABC theo tỉ số đồng dạng k=12  thì:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay