Câu hỏi:

19/07/2022 783

Cho hàm số y = f(x) có đạo hàm f'(x) = x + 1 với mọi x Î ℝ. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: Hàm số nghịch biến Û f'(x) < 0

Û x + 1 < 0 Û x < −1.

Vậy hàm số y = f(x) nghịch biến trên khoảng (−¥; −1).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với a là số thực dương tuỳ ý, log(100a) bằng

Xem đáp án » 19/07/2022 22,195

Câu 2:

Nghiệm của phương trình log12(2x1)= 0 là

Xem đáp án » 19/07/2022 21,951

Câu 3:

Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu max[0;3]f(x)= f(2) thì min[0;3]f(x) bằng

Xem đáp án » 19/07/2022 21,343

Câu 4:

Hàm số F(x) = cot x là một nguyên hàm của hàm số nào dưới đây trên khoảng 0;π2?

Xem đáp án » 19/07/2022 19,959

Câu 5:

Trong không gian Oxyz, cho điểm M(2; −2; 1) và mặt phẳng (P): 2x – 3y – z + 1 = 0. Đường thẳng đi qua M và vuông góc với mặt phẳng (P) có phương trình là

Xem đáp án » 19/07/2022 19,269

Câu 6:

Có bao nhiêu số nguyên dương a sao cho mỗi a có đúng hai số nguyên b thoả mãn (3b – 3)(a.2b – 16) < 0

Xem đáp án » 19/07/2022 15,940

Câu 7:

Cho hàm số f(x) = 1 + e2x. Khẳng định nào dưới đây là đúng?

Xem đáp án » 19/07/2022 12,567