Câu hỏi:
19/07/2022 2,099Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên ℝ và = F(2) – G(0) + a (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x), y = G(x), x = 0 và x = 2. Khi S = 6 thì a bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên ℝ nên ta có
∀x Î ℝ: F(x) = G(x) + C (với C là hằng số).
Do đó F(0) = G(0) + C (1).
Lại có = F(2) – F(0)
Û F(2) – G(0) + a = F(2) – F(0)
Û F(0) = G(0) – a (2).
Từ (1) và (2) suy ra C = −a.
Khi đó F(x) = G(x) – a, ∀x Î ℝ Û |F(x) – G(x)| = a, ∀x Î ℝ.
Diện tích hình phẳng giới hạn bởi các đường y = F(x), y = G(x), x = 0 và x = 2 là
S = = = 2a = 6 Þ a = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu = f(2) thì bằng
Câu 3:
Có bao nhiêu số nguyên dương a sao cho mỗi a có đúng hai số nguyên b thoả mãn (3b – 3)(a.2b – 16) < 0
Câu 4:
Trong không gian Oxyz, cho điểm M(2; −2; 1) và mặt phẳng (P): 2x – 3y – z + 1 = 0. Đường thẳng đi qua M và vuông góc với mặt phẳng (P) có phương trình là
Câu 5:
Hàm số F(x) = cot x là một nguyên hàm của hàm số nào dưới đây trên khoảng ?
về câu hỏi!