Câu hỏi:
19/07/2022 8,747Cho các số phức z1, z2, z3 thoả mãn 2|z1| = 2|z2| = |z3| = 2 và (z1 + z2)z3 = 2z1z2. Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng toạ độ. Diện tích tam giác ABC bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
- Từ giả thiết ta được |z1| = |z2| = 1 và |z3| = 2.
- Theo giả thiết (z1 + z2)z3 = 2z1z2
Þ |z1 + z2||z3| = 2|z1||z2|
Þ |z1 + z2|.2 = 2.1.1
Þ |z1 + z2| = 1.
- Từ đẳng thức |z1 + z2|2 + |z1 − z2|2 = 2
Þ |z1 – z2| = Þ AB = .
- Theo giả thiết (z1 + z2)z3 = 2z1z2
Û z1z3 + z2z3 = 2z1z2
Û z1z3 + z2z3 – 2z2z3 = 2z1z2 – 2z2z3
Û z1z3 – z2z3 = 2z1z2 – 2z2z3
Û (z1 – z2)z3 = 2(z1 – z3)z2
Þ |z1 – z2||z3| = 2|z1 – z3||z2|
Þ |z1 – z3| = Þ AC = .
- Theo giả thiết (z1 + z2)z3 = 2z1z2
Û z1z3 + z2z3 = 2z1z2
Û z1z3 – z1z2 = z1z2 – z2z3
Û (z3 – z2)z1 = (z1 – z3)z2
Û |z3 – z2|.|z1| = |z1 – z3|.|z2|
Þ |z3 – z2| = Þ BC = .
Suy ra tam giác ABC đều cạnh .
Suy ra S∆ABC = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu = f(2) thì bằng
Câu 3:
Có bao nhiêu số nguyên dương a sao cho mỗi a có đúng hai số nguyên b thoả mãn (3b – 3)(a.2b – 16) < 0
Câu 4:
Trong không gian Oxyz, cho điểm M(2; −2; 1) và mặt phẳng (P): 2x – 3y – z + 1 = 0. Đường thẳng đi qua M và vuông góc với mặt phẳng (P) có phương trình là
Câu 5:
Hàm số F(x) = cot x là một nguyên hàm của hàm số nào dưới đây trên khoảng ?
về câu hỏi!