Câu hỏi:

12/07/2024 1,764

Tìm giá trị nhỏ nhất của biểu thức sau: A=2x2+10y26xy6x2y+16

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Đưa biểu thức về dạng:A=fx2+a

Khi đó biểu thức A min khi fx=0  và GTNN của A chính bằng a.

Cách giải:

A=2x2+10y26xy6x2y+16

=x26xy+9y2+x26x+9+y22y+1+6

=x3y2+x32+y12+6

Ta có: x3y20;x320;y120  với mọi x, y

Aminx3y2=0x32=0y12=0x3y=0x3=0y1=0x=3yx=3y=1x=3y=1

Vậy GTNN của A là 6 khi x=3  y=1 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

Phương pháp nhóm nhiều hạng tử kết hợp với dùng hằng đẳng thức.

Cách giải:

x26xy4z2+9y24z2

=x22.x.3y+3y22z2

=x3y22z2

=x3y+2zx3y2z

Lời giải

Phương pháp:

Khai triển hằng đẳng thức x32 ; áp dụng hằng đẳng thức hiệu hai lập phương và hiệu hai bình phương để nhân 2 đa thức x+3x23x+9 và 2 đa thức 3x13x+1 ; sau đó phá ngoặc và rút gọn đa thức.

Cách giải:

x33x+3x23x+9+3x13x+1

=x33.x2.3+3.x.3233x+3x23.x+32+3x212

=x39x2+27x27x3+33+9x21

=x39x2+27x27x327+9x21

=x3x3+9x2+9x2+27x+27271

=27x55

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP