Câu hỏi:
12/07/2024 1,481Trong kinh tế thị trường, lượng cầu và lượng cung là hai khái niệm quan trọng. Lượng cầu chỉ khả năng về số lượng sản phẩm cần mua của bên mua (người dùng), tùy theo đơn giá bán sản phẩm; còn lượng cung chỉ khả năng cung cấp số lượng sản phẩm này cho thị trường của bên bán (nhà sản xuất) cũng phụ thuộc vào đơn giá sản phẩm.
Người ta khảo sát nhu cầu của thị trường đối với sản phẩm A theo đơn giá của sản phẩm này và thu được bảng sau:
Đơn giá sản phẩm A (đơn vị: nghìn đồng) |
10 |
20 |
40 |
70 |
90 |
Lượng cầu (nhu cầu về số sản phẩm) |
338 |
288 |
200 |
98 |
50 |
Hãy cho biết tại sao bảng giá trị trên xác định một hàm số? Hãy tìm tập xác định và tập giá trị của hàm số đó (gọi là hàm cầu).
Câu hỏi trong đề: Giải SBT Toán 10 Bài 1. Hàm số và đồ thị có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Từ bảng đã cho ta có thể thấy với mỗi mức đơn giá, đều có duy nhất một giá trị về lượng cầu. Do vậy bảng giá trị cho ở đề bài xác định một hàm số.
Hàm số này có tập xác định D = {10; 20; 40; 70; 90} và có tập giá trị T = {338; 288; 200; 98; 50}.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Tập xác định của hàm số là: D = ℝ \ {– 5}.
+ Xét khoảng (– ∞; – 5):
Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.
Ta có: \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}}\)\( = \frac{{ - {x_2} - 5 - \left( { - {x_1} - 5} \right)}}{{\left( { - {x_1} - 5} \right)\left( { - {x_2} - 5} \right)}}\)\( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\).
Vì x1, x2 ∈ (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.
Lại có: x1 < x2 nên x1 – x2 < 0.
Do đó, f(x1) – f(x2) \( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)
+ Xét khoảng (– 5; + ∞):
Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.
Ta có: \(f\left( {{x_3}} \right) - f\left( {{x_4}} \right) = \frac{1}{{ - {x_3} - 5}} - \frac{1}{{ - {x_4} - 5}}\)\( = \frac{{ - {x_4} - 5 - \left( { - {x_3} - 5} \right)}}{{\left( { - {x_3} - 5} \right)\left( { - {x_4} - 5} \right)}}\)\( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\).
Vì x3, x4 ∈ (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.
Lại có: x3 < x4 nên x3 – x4 < 0.
Do đó, f(x3) – f(x4) \( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)
Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).
Lời giải
Hướng dẫn giải
Hai đường biểu diễn ở Hình b và Hình c không phải là đồ thị hàm số vì ứng với một giá trị của x, có đến hai (hay nhiều) giá trị khác nhau của y (quan sát trên hình sau).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận