Cho tam giác ABC có \(\widehat A = 63^\circ \), \(\widehat B = 87^\circ \), BC = 15. Tính độ dài cạnh AB, AC của tam giác đó.
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đặt a = BC, b = AC, c = AB.
Ta có a = 15.
Áp dụng định lí tổng 3 góc trong tam giác ta có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\)\( = 180^\circ - \left( {63^\circ + 87^\circ } \right) = 30^\circ \).
Áp dụng định lý sin, ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Suy ra \(AC = b = \frac{{a\sin B}}{{\sin A}} = \frac{{15.\sin 87^\circ }}{{\sin 63^\circ }} \approx 16,81\);
\(AB = c = \frac{{a\sin C}}{{\sin A}} = \frac{{15.\sin 30^\circ }}{{\sin 63^\circ }} \approx 8,42\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Áp dụng định lý sin trong tam giác ABC, ta có
\(\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Leftrightarrow \frac{{\sin B}}{{\sin C}} = \frac{b}{c} = \frac{{AC}}{{AB}}\)
Từ \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) suy ra \(\frac{{AC}}{{AB}} = \sqrt 3 \Leftrightarrow AC = AB\sqrt 3 = 2\sqrt 2 .\sqrt 3 = 2\sqrt 6 \).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có: \(\widehat {BAD} + \widehat {BAC} = 180^\circ \) (hai góc kề bù)
Suy ra: \(\widehat {BAD} = 180^\circ - \widehat {BAC} = 180^\circ - 120^\circ = 60^\circ \) nên cos\(\widehat {BAD} = \frac{1}{2}\).
Do đó áp dụng định lí côsin trong tam giác ABD, ta có:
\(\cos \widehat {BAD} = \frac{{A{D^2} + A{B^2} - B{D^2}}}{{2.AD.AB}}\)\( \Leftrightarrow \frac{1}{2} = \frac{{A{D^2} + {1^2} - {2^2}}}{{2.AD.1}}\)
\[ \Leftrightarrow A{D^2} - AD - 3 = 0\]
\( \Rightarrow AD = \frac{{1 + \sqrt {13} }}{2}\) (do AD > 0).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.