Câu hỏi:

08/08/2022 5,948

Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C.

Áp dụng định lý sin trong tam giác ABC, ta có

\(\frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Leftrightarrow \frac{{\sin B}}{{\sin C}} = \frac{b}{c} = \frac{{AC}}{{AB}}\)

Từ \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) suy ra \(\frac{{AC}}{{AB}} = \sqrt 3 \Leftrightarrow AC = AB\sqrt 3 = 2\sqrt 2 .\sqrt 3 = 2\sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Media VietJack

Ta có: \(\widehat {BAD} + \widehat {BAC} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {BAD} = 180^\circ - \widehat {BAC} = 180^\circ - 120^\circ = 60^\circ \) nên cos\(\widehat {BAD} = \frac{1}{2}\).

Do đó áp dụng định lí côsin trong tam giác ABD, ta có:

\(\cos \widehat {BAD} = \frac{{A{D^2} + A{B^2} - B{D^2}}}{{2.AD.AB}}\)\( \Leftrightarrow \frac{1}{2} = \frac{{A{D^2} + {1^2} - {2^2}}}{{2.AD.1}}\)

\[ \Leftrightarrow A{D^2} - AD - 3 = 0\]

\( \Rightarrow AD = \frac{{1 + \sqrt {13} }}{2}\) (do AD > 0).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Theo định lí sin ta có

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)\( \Rightarrow a = \frac{{b.\sin A}}{{\sin B}}\)\( = \frac{{4.\sin 60^\circ }}{{\sin 45^\circ }} = 2\sqrt 6 \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP