Câu hỏi:

08/08/2022 1,716

Cho tam giác ABC. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C.

Theo định lí sin trong tam giác ABC ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

Suy ra \(\sin A = \frac{{a.\sin C}}{c}\); \(\sin B = \frac{{b.\sin C}}{c}\).

Lại có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\); \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\).

Do đó: \[\tan A = \frac{{\sin A}}{{\cos A}} = \frac{{\frac{{a.\sin C}}{c}}}{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}} = \frac{{2ab\sin C}}{{{b^2} + {c^2} - {a^2}}}\]

\[\tan B = \frac{{\sin B}}{{\cos B}} = \frac{{\frac{{b.\sin C}}{c}}}{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}} = \frac{{2ab\sin C}}{{{a^2} + {c^2} - {b^2}}}\].

Vậy \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có BC = a, AC = b, AB = c và b + c = 2a. Khẳng định nào sau đây là đúng?

Xem đáp án » 08/08/2022 5,604

Câu 2:

Tam giác ABC có BC = a, CA = b, AB = c và \({a^2} = 2\left( {{b^2} - {c^2}} \right)\). Chứng minh rằng: \({\sin ^2}A = 2\left( {{{\sin }^2}B - {{\sin }^2}C} \right)\).

Xem đáp án » 13/07/2024 3,700

Câu 3:

Cho tam giác ABC. Khẳng định nào sau đây là đúng?

Xem đáp án » 08/08/2022 3,235

Câu 4:

Cho tam giác ABC có BC = a, AC = b, AB = c và bán kính đường tròn ngoại tiếp bằng R. Khẳng định nào sau đây là đúng?

Xem đáp án » 08/08/2022 2,637

Câu 5:

Cho tam giác ABC có BC = a, AC = b, AB = c và b – c = \(\frac{a}{2}\). Khẳng định nào sau đây là đúng?

Xem đáp án » 08/08/2022 1,903

Câu 6:

Cho tam giác ABC có BC = a, AC = b, AB = c. Khẳng định nào sau đây là đúng?

Xem đáp án » 08/08/2022 1,837

Bình luận


Bình luận