Câu hỏi:

08/08/2022 476 Lưu

Cho tam giác ABC. Trên cạnh AB, AC lần lượt lấy hai điểm M, N. Khẳng định nào sau đây là đúng?

A. \(\frac{{{S_{AMN}}}}{{{S_{ABC}}}} = \frac{{AM}}{{AB}}.\frac{{AN}}{{AC}}\);

B. \(\frac{{{S_{AMN}}}}{{{S_{ABC}}}} = \frac{{AC}}{{AB}}.\frac{{AN}}{{AM}}\);
C. \(\frac{{{S_{AMN}}}}{{{S_{ABC}}}} = \frac{{AB}}{{AM}}.\frac{{AN}}{{AC}}\);
D. \(\frac{{{S_{AMN}}}}{{{S_{ABC}}}} = \frac{{MN}}{{AB}}.\frac{{AN}}{{AC}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Media VietJack

Diện tích tam giác AMN là: \({S_{AMN}} = \frac{1}{2}.AM.AN.\sin \widehat {MAN}\).

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC}\).

Do \(\widehat {MAN} = \widehat {BAC}\) (hai góc trùng nhau)

Nên \(\frac{{{S_{AMN}}}}{{{S_{ABC}}}} = \frac{{AM}}{{AB}}.\frac{{AN}}{{AC}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2 sin A = sin B + sin C;
B. 2 sin A = 2sin B + sin C;
C. 2 sin A = sin B + 2sin C;
D. 2 sin A =2 sin B − sin C.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Theo định lý sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\).

Do đó: \(\sin A = \frac{a}{{2R}}\); \(\sin B = \frac{b}{{2R}}\); \(\sin C = \frac{c}{{2R}}\).

Ta có: sin B + sin C = \(\frac{b}{{2R}}\) + \(\frac{c}{{2R}}\) = \(\frac{{b + c}}{{2R}}\).

Mà b + c = 2a nên 2sin A = \(\frac{{2a}}{{2R}}\)= \(\frac{{b + c}}{{2R}}\).

Vậy 2 sin A = sin B + sin C.

Lời giải

Hướng dẫn giải

Theo định lý sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\( \Rightarrow \frac{{{a^2}}}{{{{\sin }^2}A}} = \frac{{{b^2}}}{{{{\sin }^2}B}} = \frac{{{c^2}}}{{{{\sin }^2}C}} = \frac{{{b^2} - {c^2}}}{{{{\sin }^2}B - {{\sin }^2}C}}\) (1)

Thay \({a^2} = 2\left( {{b^2} - {c^2}} \right)\) vào (1) ta được:

\(\frac{{2\left( {{b^2} - {c^2}} \right)}}{{{{\sin }^2}A}} = \frac{{{b^2} - {c^2}}}{{{{\sin }^2}B - {{\sin }^2}C}}\)\( \Leftrightarrow \frac{2}{{{{\sin }^2}A}} = \frac{1}{{{{\sin }^2}B - {{\sin }^2}C}}\)

Suy ra \({\sin ^2}A = 2\left( {{{\sin }^2}B - {{\sin }^2}C} \right)\).

Câu 3

A. sin B = sin B. cos C + sin C. cos B;
B. sin A = sin B. cos C + sin C. cos B;
C. sin C = sin B. cos C + sin C. cos B;
D. sin A + sin B = sin B. cos C + sin C. cos B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. sin A + sin B + sin C = \(\frac{{abc}}{{2R}}\);
B. sin A + sin B + sin C = \(\frac{{a + b + c}}{{2R}}\);
C. sin A + sin B + sin C = \(\frac{{abc}}{R}\);
D. sin A + sin B + sin C = \(\frac{{a + b + c}}{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({b^2} - {c^2} = b\left( {b.\cos C - c.\cos B} \right)\);
B. \({b^2} - {c^2} = c\left( {b.\cos C - c.\cos B} \right)\);
C. \({b^2} - {c^2} = a\left( {b.\cos C - c.\cos B} \right)\);
D. \({b^2} - {c^2} = abc\left( {b.\cos C - c.\cos B} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. sin A = sin B – sin C;
B. sin A = 2sin B + 2sin C;
C. sin A = sin B + sin C;
D. sin A = 2sin B – 2sin C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\frac{{\tan A}}{{\tan B}} = \frac{{{a^2} + {b^2} - {c^2}}}{{{c^2} + {b^2} - {a^2}}}\];
B. \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {b^2} - {a^2}}}{{{c^2} + {b^2} - {a^2}}}\];
C. \[\frac{{\tan A}}{{\tan B}} = \frac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}}\];
D. \[\frac{{\tan A}}{{\tan B}} = \frac{{2\left( {{c^2} + {a^2} - {b^2}\,} \right)}}{{{c^2} + {b^2} - {a^2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP