Câu hỏi:

08/08/2022 405 Lưu

Tam giác ABC có AB = \(2\sqrt 2 \), AC = \(2\sqrt 3 \) và độ dài đường cao AH = 2. Khi đó diện tích tam giác ABC bằng:

A. 3 + 3\(\sqrt 3 \);
B. 2 + 3\(\sqrt 2 \);
C. 3 + 2\(\sqrt 2 \);
D. 2 + 2\(\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D.

Media VietJack

Áp dụng định lý Pythagore ta có:

BH = \(\sqrt {A{B^2} - A{H^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} - {2^2}} = 2\)

Tương tự: CH = \(\sqrt {A{C^2} - A{H^2}} = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - {2^2}} = 2\sqrt 2 \).

Do đó BC = BH + CH = 2 + 2\(\sqrt 2 \).

Vậy diện tích tam giác ABC là: S = \(\frac{1}{2}\)AH.BC = \(\frac{1}{2}\). 2. (2 + 2\(\sqrt 2 \)) = 2 + 2\(\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{{a^2}\sqrt 3 }}{2}\);
B. \({a^2}\sqrt 3 \);
C. \(\frac{{{a^2}\sqrt 3 }}{3}\);
D. \(\frac{{{a^2}\sqrt 3 }}{6}\).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Media VietJack

Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC sinABC = \(\frac{1}{2}.a.2a.\sin 60^\circ \) = \(\frac{{{a^2}\sqrt 3 }}{2}\).

Do đó diện tích hình bình hành ABCD là: \({S_{ABCD}}\)= 2S = \({a^2}\sqrt 3 \).

Lời giải

Hướng dẫn giải:

Cách 1. Ta có \(p = \frac{1}{2}.\left( {3 + 4 + 5} \right) = 6\).

Áp dụng công thức Heron, ta có:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {6\left( {6 - 4} \right)\left( {6 - 5} \right)\left( {6 - 3} \right)} = 6\).

Cách 2. Nhận thấy \({b^2} = {a^2} + {c^2}\) ( vì \({5^2} = {3^2} + {4^2}\))

Suy ra tam giác ABC vuông tại B, do đó diện tích tam giác ABC là:

\(S = \frac{1}{2}a.c = \frac{1}{2}.3.4 = 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 12\(\sqrt 3 \);
B. 24\(\sqrt 3 \);
C. 48\(\sqrt 3 \);
D. 6\(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP