Câu hỏi:

08/08/2022 207

Cho tam giác có: a = 8, b = 11, \(\widehat C = 30^\circ \). Xét dạng của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B.

Ta có: \({c^2} = {a^2} + {b^2} - 2ab.\cos C\)

\({c^2} = {8^2} + {11^2} - 2.8.11.\cos 30^\circ = 185 - 88\sqrt 3 \)\( \Rightarrow c \approx 5,71\).

Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{11}^2} + {{5,71}^2} - {8^2}}}{{2.11.5,71}} \approx 0,71\).

\( \Rightarrow \widehat A \approx 44,5^\circ \).

Do đó: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 105,5^\circ \).

Vậy tam giác ABC là tam giác tù.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Áp dụng hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Theo định lí sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Rightarrow \sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).

Từ đó ta có: sinC = 2sinBcosA

\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

\( \Leftrightarrow {c^2} = {b^2} + {c^2} - {a^2} \Rightarrow a = b\).

Suy ra tam giác ABC cân tại đỉnh C.

Câu 2

Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Theo hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Do đó:

Nếu b2 + c2 – a2 > 0  thì cos A > 0. Do đó góc A là góc nhọn.

Nếu b2 + c2 – a2 < 0  thì cos A < 0. Do đó góc A là góc tù.

Câu 3

Xác định dạng của tam giác ABC biết S = p(p – a) với S là diện tích tam giác ABC và p là nửa chu vi tam giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác ABC thỏa mãn \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\). Xác định dạng của tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tam giác ABC thỏa mãn \(\frac{{\sin B}}{{\sin A}} = 2.\cos C\). Khi đó:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay