Câu hỏi:
08/08/2022 239Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}} = \frac{{12}}{{8\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\).
Suy ra: \(\widehat A = 60^\circ \) hoặc \(\widehat A = 180^\circ - 60^\circ = 120^\circ \) mà \(\widehat B = 60^\circ \) nên \(\widehat A = \widehat B = \widehat C = 60^\circ \) (loại trường hợp \(\widehat A = 120^\circ \) do không thỏa mãn định lí tổng 3 góc trong tam giác).
Vậy tam giác ABC là tam giác đều.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Áp dụng hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Theo định lí sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Rightarrow \sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).
Từ đó ta có: sinC = 2sinBcosA
\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
\( \Leftrightarrow {c^2} = {b^2} + {c^2} - {a^2} \Rightarrow a = b\).
Suy ra tam giác ABC cân tại đỉnh C.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Theo hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Do đó:
Nếu b2 + c2 – a2 > 0 thì cos A > 0. Do đó góc A là góc nhọn.
Nếu b2 + c2 – a2 < 0 thì cos A < 0. Do đó góc A là góc tù.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.