Câu hỏi:

09/08/2022 213

Cho DABC = DDEG. Biết \(\widehat A + \widehat B = 140^\circ ,\widehat E = 45^\circ .\) Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\)

Hay \(\widehat C = 180^\circ - 140^\circ = 40^\circ \)

DABC = DDEG nên ta có \(\widehat B = \widehat E\) (hai góc tương ứng)

Do đó \(\widehat B = 45^\circ \)

\(\widehat A + \widehat B = 140^\circ \) nên \(\widehat A = 140^\circ - \widehat B = 140^\circ - 45^\circ = 95^\circ \)

Vì 95° > 45° > 40°

Do đó \(\widehat A > \widehat B > \widehat C\)

Vậy \(\widehat A > \widehat B > \widehat C.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho DABC = DMNP. Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: A

DABC = DMNP nên ta có:

+) \(\widehat {ABC} = \widehat {MNP}\) (hai góc tương ứng). Do đó A là đúng, B là sai.

+) AB = MN, BC = NP (các cặp cạnh tương ứng). Do đó C và D là sai.

Vậy ta chọn phương án A.

Lời giải

Đáp án đúng là: D

Vì tam giác ABC và tam giác có ba đỉnh O, H, K bằng nhau, lại có \(\widehat A = \widehat O,\widehat B = \widehat K.\)

Do đó, nếu hai tam giác đó bằng nhau thì:

+ Đỉnh A của tam giác ABC tương ứng với đỉnh O của tam giác OHK;

+ Đỉnh B của tam giác ABC tương ứng với đỉnh K của tam giác OHK.

Khi đó đỉnh C của tam giác ABC tương ứng với đỉnh H của tam giác OHK.

Vậy kí hiệu bằng nhau của hai tam giác này là: DABC = DOKH.

Câu 3

Cho hai tam giác ABC và MNP như hình vẽ dưới đây:

Cho hai tam giác ABC và MNP như hình vẽ dưới đây: (ảnh 1)

Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay