Câu hỏi:

09/08/2022 324

Cho hình dưới đây:

Cho hình dưới đây: Xét các khẳng định: (1) MP là tia phân giác của  (ảnh 1)

Xét các khẳng định:

(1) MP là tia phân giác của \(\widehat {NMQ}\);

(2) NQ là tia phân giác của \(\widehat {MNP}\).

Chọn khẳng định đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

+ Xét tam giác MNP và tam giác MPQ có:

MN = MQ, NP = QP, MP là cạnh chung

Suy ra DMNP = DMQP (c.c.c)

Do đó \(\widehat {NMP} = \widehat {QMP}\) (hai góc tương ứng)

Nên MP là tia phân giác của \(\widehat {NMQ}\). Do đó (1) là đúng.

+ Xét khẳng định (2): NQ là tia phân giác của \(\widehat {MNP}\).

Để NQ là tia phân giác của \(\widehat {MNP}\) thì \(\widehat {MNQ} = \widehat {QNP}\) nhưng không có dữ kiện nào để khẳng định điều này.

Vậy chỉ có (1) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Xét tam giác ABD và tam giác ACD có:

AB = AC, BD = CD, AD là cạnh chung

Suy ra DABD = DACD (c.c.c)

Do đó \(\widehat {BAD} = \widehat {CAD},\widehat B = \widehat C,\widehat {BDA} = \widehat {CDA}\) (các cặp cạnh tương ứng)

Nên \(\widehat {BDA} = \widehat {CDA} = 60^\circ \)

Xét tam giác ABD có: \(\widehat {BAD} + \widehat B + \widehat {BDA} = 180^\circ \) (tổng ba góc trong một tam giác)

Suy ra \[\widehat {BAD} = 180^\circ  - \widehat B - \widehat {BDA}\]

Hay \[\widehat {BAD} = 180^\circ - 100^\circ - 60^\circ = 20^\circ \]

\(\widehat {BAD} = \widehat {CAD}\) nên \(\widehat {BAD} = \widehat {CAD} = 20^\circ \)

Mặt khác \(\widehat {BAC} = \widehat {BAD} + \widehat {CAD} = 20^\circ + 20^\circ = 40^\circ \)

Vậy số đo của \(\widehat {BAC}\) bằng 40°.

Câu 2

Lời giải

Đáp án đúng là: D

Xét tam giác ABC và tam giác ACD có:

AB = CD, BC = DA, AC là cạnh chung

Suy ra DABC = DCDA (c.c.c)

Do đó \(\widehat {BAC} = \widehat {DCA}\) (hai góc tương ứng)

\(\widehat {DCA} = 120^\circ \)

Nên \(\widehat {BAC} = 120^\circ \)

Mặt khác: DABC = DCDA (chứng minh trên)

Suy ra \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

Do đó AD // BC (dấu hiệu nhận biết)

Vậy \(\widehat {BAC} = 120^\circ \) và AD // BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP