Câu hỏi:

12/07/2024 434

Cho ΔMNP có PM=PN. Chứng minh: PMN^=PNM^ bằng hai cách.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1:

Media VietJack

 Lấy I trung điểm của MN, nối I với P.

* Xét hai tam giác ΔMIP ΔNIP có:

          MI=NI (trung điểm của MN)

          cạnh IP chung

          PM=PN (gt)

ΔMIP=ΔNIP (c.c.c)

PMI^=PNI^ (2 góc tương ứng bằng nhau) hay PMN^=PNM^ (đpcm).

Cách 2:

Media VietJack

 Kẻ tia phân giác PH của góc MPN^ cắt MN tại H.

* Xét hai tam giác ΔMPH ΔNPH có:

          PM=PN (gt)

          MPH^=HPN^  (PH là tia phân giác của góc MPN^)

          cạnh PH chung

ΔMPH=ΔNPH(c.g.c)

PMH^=PNH^  (2 góc tương ứng bằng nhau) hay PMN^=PNM^ (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC AB = AC. Lấy điểm E trên cạnh AB, F trên cạnh AC sao cho AE=AF.

Chứng minh: BF=CE ΔBEC=ΔCFB.

Xem đáp án » 12/07/2024 1,412

Câu 2:

Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.

Chứng minh: AC=DB và AC//DB.

Xem đáp án » 12/07/2024 813

Câu 3:

Cho ΔABC AB = AC. Lấy điểm E trên cạnh AB, F trên cạnh AC sao cho AE=AF.

BF cắt CE tại I, cho biết IE=IF. Chứng minh: ΔIBE=ΔICF bằng hai cách.

Xem đáp án » 11/07/2024 700

Câu 4:

Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.
Chứng minh: AD=CB và AD//CB.

Xem đáp án » 12/07/2024 580

Câu 5:

Với cùng một số tiền để mua 225m vải loại 1 có thể mua được bao nhiêu m vải loại 2; biết rằng giá tiền vải loại 2 chỉ bằng 75% giá tiền vải loại 1

Xem đáp án » 12/07/2024 470

Câu 6:

Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.

Vẽ CHAB tại H Trên tia đối của tia OH lấy điểm I sao cho OI=OH. Chứng minh: DIAB.

Xem đáp án » 13/07/2024 440