Câu hỏi:

18/08/2022 2,464

Cho bất phương trình mx2 – (2m – 1)x + m + 1 < 0(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Đặt f(x) = mx2 – (2m – 1)x + m + 1.

Ta có f(x) < 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\) \( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \)

Xét m = 0 khi đó f(x) = x + 1 nên m = 0 không thoả mãn.

Xét m ≠ 0\( \Leftrightarrow \) f(x) ≥ 0 với mọi x \( \in \)\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = - 8m + 1 \le 0\end{array} \right.\)\( \Leftrightarrow m \ge \frac{1}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Tam thức bậc hai f(x) = x2 – x – 6 có ∆ = 25 > 0; hai nghiệm phân biệt là x = – 2; x = 3 và a = 1 > 0

Ta có bảng xét dấu

x

–∞

–2

 

3

+∞

f(x)

+

0

0

+

Từ bảng xét dấu ta có x2 – x – 6 ≤ 0 với mọi x \( \in \) [– 2; 3].

Câu 2

Lời giải

Đáp án đúng là: D

Tam thức bậc hai f(x) = x2 – 1 có ∆ = 4 > 0; hai nghiệm phân biệt là x = – 1; x = 1 và a = 1 > 0

Ta có bảng xét dấu

Tập nghiệm của bất phương trình x^2 – 1 > 0 là: A. (1; + vô cùng) (ảnh 1)

Từ bảng xét dấu ta có x2 – 1 > 0 với mọi x \( \in \) (–∞; –1)\( \cup \)(1; +∞).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP