Câu hỏi:

18/08/2022 402

Tập nghiệm của phương trình: \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Điều kiện: \(\left\{ \begin{array}{l}3 - x + {x^2} \ge 0\\2 + x - {x^2} \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 - x + {x^2} \ge 0\forall x\\ - 1 \le x \le 2\end{array} \right. \Leftrightarrow - 1 \le x \le 2\)

Xét phương trình:\[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\]

\( \Leftrightarrow \sqrt {3 - x + {x^2}} = \sqrt {2 + x - {x^2}} + 1\)

Bình phương hai vế ta được

\[ \Rightarrow 3 - x + {x^2} = 1 + 2 + x - {x^2} + 2\sqrt {2 + x - {x^2}} \]

\[ \Rightarrow 2 + x - {x^2} + \sqrt {2 + x - {x^2}} - 2 = 0\] (*)

Đặt t = \[\sqrt {2 + x - {x^2}} \] (t ≥ 0)

(*) t2 + t – 2 = 0

\(\left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\)

Vì t 0 nên t = 1 thỏa mãn)

\[ \Rightarrow \sqrt {2 + x - {x^2}} = 1\]

\[ \Rightarrow {x^2} - x - 1 = 0\]\[ \Rightarrow \left[ \begin{array}{l}x = \frac{{1 + \sqrt 5 }}{2}\\x = \frac{{1 - \sqrt 5 }}{2}\end{array} \right.\]

Kết hợp với điều kiện phương trình có hai nghiệm \[\left[ \begin{array}{l}x = \frac{{1 + \sqrt 5 }}{2}\\x = \frac{{1 - \sqrt 5 }}{2}\end{array} \right.\].

Vậy tập nghiệm của phương trình là: S = \[\left\{ {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} \right\}\].

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\]

Lời giải

Đáp án đúng là: C

Bình phương hai vế của phương trình ta có

x2 – 4x – 12 = (x – 4)2

\( \Rightarrow \) x2 – 4x – 12 = x2 – 8x + 16

\( \Rightarrow \) 4x = 28

\( \Rightarrow \) x = 7

Thay nghiệm trên vào phương trình đã cho, ta thấy x = 7 thoả mãn

Vậy phương trình có nghiệm x = 7

Lời giải

Đáp án đúng là: A

Bình phương hai vế của phương trình ta có

2x2 – 2x + 4 = x2 – x + 2

\( \Rightarrow \) x2 – x + 2 = 0

Phương trình có = (– 1)2 – 4.1.2 = – 7 < 0

Suy ra phương trình vô nghiệm

Vậy số nghiệm của phương trình là 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Giải phương trình: \[\sqrt {2{x^2} - 6x + 4} = x - 2\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay