Câu hỏi:

18/08/2022 790

Tổng các nghiệm phương trình \({x^2} - 6x + 9 = 4\sqrt {{x^2} - 6x + 6} \)

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Đặt \(\sqrt {{x^2} - 6x + 6} = t(t > 0)\) ta có

t2 + 3 – 4t = 0

\( \Rightarrow \) t = 1 (thỏa mãn) hoặc t = 3 (thỏa mãn)

Với t = 1 ta có phương trình \(\sqrt {{x^2} - 6x + 6} = 1\)

\( \Rightarrow \) x2 – 6x + 6 = 1

\( \Rightarrow \) x2 – 6x + 5 = 0

\( \Rightarrow \) x = 1 hoặc x = 5

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = 1, x = 5 thoả mãn

Với t = 3 ta có phương trình \(\sqrt {{x^2} - 6x + 6} = 3\)

\( \Rightarrow \) x2 – 6x + 6 = 9

\( \Rightarrow \) x2 – 6x – 3 = 0

\( \Rightarrow \) x = \(3 + 2\sqrt 3 \) hoặc x = \(3 - 2\sqrt 3 \)

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = \(3 + 2\sqrt 3 \), x = \(3 - 2\sqrt 3 \)thoả mãn

Vậy tổng các nghiệm của phương trình là: 1 + 5 + \(3 + 2\sqrt 3 \)+\(3 - 2\sqrt 3 \) = 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \[\sqrt {{x^2} - 4x - 12} = x - 4\]

Xem đáp án » 18/08/2022 1,946

Câu 2:

Số nghiệm của phương trình \(\sqrt {2{x^2} - 2x + 4} = \sqrt {{x^2} - x + 2} \)

Xem đáp án » 18/08/2022 868

Câu 3:

Số nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]

Xem đáp án » 18/08/2022 779

Câu 4:

Giải phương trình: \[\sqrt {2{x^2} - 6x + 4} = x - 2\]

Xem đáp án » 18/08/2022 467

Câu 5:

Phương trình: \[\sqrt {x + 2} = 4 - x\] có bao nhiêu nghiệm

Xem đáp án » 18/08/2022 408

Câu 6:

Tập nghiệm của phương trình: \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:

Xem đáp án » 18/08/2022 336

Bình luận


Bình luận