Câu hỏi:

22/08/2022 10,516

Cho tập hợp A={xR|2xx2+11}; B là tập hợp tất cả các giá trị nguyên của b sao cho phương trình x2 – 2bx + 4 = 0 vô nghiệm. Số phần tử chung của hai tập hợp trên là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét tập hợp A:

Ta có 2xx2+11.

Û 2x ≥ x2 + 1 (do x2 + 1 > 0)

Û x2 – 2x + 1 ≤ 0.

Û (x – 1)2 ≤ 0.

Mà (x – 1)2 ≥ 0 với mọi x.

Nên (x – 1)2 ≤ 0 Û x – 1 = 0

Û x = 1 ℝ.

Vì vậy A = {1}.

Xét tập hợp B:

Xét phương trình x2 – 2bx + 4 = 0   (*)

∆’ = b2 – 4.

Phương trình (*) vô nghiệm Û ∆’ < 0.

Û b2 – 4 < 0.

Û –2 < b < 2.

Vì b là số nguyên nên ta nhận b = –1; b = 0; b = 1.

Suy ra tập B = {–1; 0; 1}.

Tập A ∩ B = {1}.

Vậy số phần tử chung của tập A và tập B là 1 phần tử.

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho A = {x ℝ | x + 2 ≥ 0}, B = {x ℝ | 5 – x ≥ 0}. Khi đó A \ B là:

Xem đáp án » 24/08/2022 10,449

Câu 2:

Cho hai tập khác rỗng A = (m – 1; 4], B = (–2; 2m + 2), m ℝ. Tìm m để A ∩ B ≠ .

Xem đáp án » 24/08/2022 6,363

Câu 3:

Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lý, 14 học sinh giỏi cả môn Toán và Lý và có 6 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?

Xem đáp án » 22/08/2022 1,025

Câu 4:

Cho ba tập hợp A = [–2; 2], B = [1; 5], C = [0; 1]. Khi đó tập (A \ B) ∩ C là:

Xem đáp án » 24/08/2022 448

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store