Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lý, 14 học sinh giỏi cả môn Toán và Lý và có 6 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi T, L, K lần lượt là tập hợp các học sinh giỏi Toán, tập hợp các học sinh giỏi Lý và tập học các học sinh không giỏi môn nào cả.
Theo đề, ta có:
⦁ n(T) = 25;
⦁ n(L) = 23;
⦁ n(T ∩ L) = 14;
⦁ n(K) = 6.
Ta có sơ đồ Ven biểu diễn 3 tập hợp T, L, K như sau:
Khi đó số học sinh cả lớp là: n(T ∪ L) + n(K).
Ta có n(T ∪ L) = n(T) + n(L) – n(T ∩ L) = 25 + 23 – 14 = 34.
Vậy số học sinh cả lớp là: 34 + 6 = 40 (học sinh).
Do đó ta chọn phương án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
⦁ Ta có x + 2 ≥ 0.
Û x ≥ –2.
Do đó tập A = [–2; +∞).
⦁ Ta có 5 – x ≥ 0.
Û x ≤ 5.
Do đó tập B = (–∞; 5].
Để xác định tập hợp A \ B, ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy A \ B = (5; +∞) (vì tập B có số 5 nên phần bù sẽ không lấy số 5).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
⦁ Xét tập hợp A:
Ta có .
Û 2x ≥ x2 + 1 (do x2 + 1 > 0)
Û x2 – 2x + 1 ≤ 0.
Û (x – 1)2 ≤ 0.
Mà (x – 1)2 ≥ 0 với mọi x.
Nên (x – 1)2 ≤ 0 Û x – 1 = 0
Û x = 1 ∈ ℝ.
Vì vậy A = {1}.
⦁ Xét tập hợp B:
Xét phương trình x2 – 2bx + 4 = 0 (*)
∆’ = b2 – 4.
Phương trình (*) vô nghiệm Û ∆’ < 0.
Û b2 – 4 < 0.
Û –2 < b < 2.
Vì b là số nguyên nên ta nhận b = –1; b = 0; b = 1.
Suy ra tập B = {–1; 0; 1}.
Tập A ∩ B = {1}.
Vậy số phần tử chung của tập A và tập B là 1 phần tử.
Do đó ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.