Câu hỏi:
23/08/2022 779Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).
a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) +) Mã cổ phiếu A:
Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 45,1, Q3 = 45,5
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 45,5 – 45,1 = 0,4.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 45,5 + 1,5.0,4 = 46,1
Hoặc x < Q1 − 1,5∆Q = 45,1 − 1,5.0,4 = 44,5
Vậy đối chiếu mẫu số liệu của A suy ra giá trị ngoại lệ là 35,5 và rơi vào ngày thứ 4.
+) Mã cổ phiếu B:
Áp dụng các bước tìm tứ phân vị ta dễ dàng tìm được Q1 = 47,8, Q3 = 49
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 49 – 47,8 = 1,2.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 49 + 1,5.1,2 = 50,8
Hoặc x < Q1 − 1,5∆Q = 47,8 − 1,5.1,2 = 46
Vậy đối chiếu mẫu số liệu của B suy ra giá trị ngoại lệ là 68,4 và rơi vào ngày thứ 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu.
Câu 3:
Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).
a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.
Câu 4:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
b)
Câu 5:
b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.
Câu 6:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
về câu hỏi!