Câu hỏi:
23/08/2022 1,458
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\x - y - 1 \le 0\\x + 2y - 10 \le 0\end{array} \right..\) Diện tích miền nghiệm của hệ bất phương trình bằng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Trên mặt phẳng Oxy:
• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.
Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: x = 0) chứa điểm (1; 0).
• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.
Vẽ đường thẳng d2: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).
Xét điểm O(0; 0) ∉ d2, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d2) chứa điểm O(0; 0).
• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.
Vẽ đường thẳng d3: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d3) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(–1; 0), B(4; 3) và C(0; 5).
Gọi BH là đường cao kẻ từ B đến AC.
Khi đó BH = |xB| = 4.
CA = CO + OA = |yC| + |yA| = 5 + 1 = 6.
Diện tích của tam giác ABC là:
S = \(\frac{1}{2}\) BH.CA = \(\frac{1}{2}\) .4.6 = 12 (đơn vị diện tích).
Vậy ta chọn phương án B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Giả sử xí nghiệp sản xuất x (cái) bánh đậu xanh và y (cái) bánh dẻo nhân đậu xanh (x ≥ 0, y ≥ 0).
Sản xuất một cái bánh đậu xanh cần 0,03 kg đường, 0,04 kg đậu xanh nên để sản xuất x (cái) bánh đậu xanh thì cần 0,03x (kg) đường và 0,04x (kg) đậu xanh.
Sản xuất một cái bánh dẻo cần 0,07 kg đường, 0,04 kg đậu xanh nên để sản xuất y (cái) bánh dẻo thì cần 0,07y (kg) đường và 0,04y (kg) đậu xanh.
Số đường mà xí nghiệp có thể chuẩn bị được là 300 kg nên ta có:
0,03x + 0,07y ≤ 300 Û 3x + 7y – 30 000 ≤ 0.
Đậu xanh mà xí nghiệp có thể chuẩn bị được là 200 kg nên ta có:
0,04x + 0,04y ≤ 200 Û x + y – 5 000 ≤ 0.
Bán được hết x (cái) bánh đậu xanh và y (cái) bánh dẻo thì xí nghiệp thu được số tiền lãi là: F(x; y) = 5 000x + 4 500y.
Bài toán trở thành: Xác định x, y sao cho F(x; y) = 5 000x + 4 500y đạt giá trị lớn nhất với: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + 7y - 30\,\,000 \le 0\\x + y - 5\,\,000 \le 0.\end{array} \right.\)
Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng Oxy:
• Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả bờ d1: x = 0) chứa điểm (1; 1).
• Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng (kể cả bờ d2: y = 0) chứa điểm (1; 1).
• Miền nghiệm của bất phương trình 3x + 7y – 30 000 ≤ 0 là nửa mặt phẳng (kể cả bờ d3: 3x + 7y – 30 000 = 0) chứa điểm (1; 1).
• Miền nghiệm của bất phương trình x + y – 5 000 ≤ 0 là nửa mặt phẳng (kể cả bờ d3: x + y – 5 000 = 0) chứa điểm (1; 1).
Miền không gạch chéo (kể cả bờ d1, d2, d3, d4) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Miền nghiệm của hệ bất phương trình là miền tứ giác OABC với O(0; 0), A(5 000; 0), B(1 250; 3 750) và C(0; 4 000).
Xét biểu thức F(x; y) = 5 000x + 4 500y, ta có:
• Tại O(0; 0):
F = 5 000.0 + 4 500.0 = 0;
• Tại A(5 000; 0):
F = 5 000 . 5 000 + 4 500.0 = 25 000 000;
• Tại B(1 250; 3 750):
F = 5 000 .1 250 + 4 500 .3 750 = 23 125 000;
• Tại C(0; 4 000):
F = 5 000.0 + 4 500 . 4 000 = 18 000 000.
Khi đó F(x; y) đạt giá trị lớn nhất bằng 25 000 000 tại A(5 000; 0).
Vậy xí nghiệp cần sản xuất 5 000 cái bánh đậu xanh và không sản xuất bánh dẻo.
Ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Biểu diễn miền nghiệm của hệ bất phương trình trên mặt phẳng Oxy:
• Miền nghiệm của bất phương trình x – y – 1 ≤ 0 là nửa mặt phẳng (kể cả bờ d1: x – y – 1 = 0) chứa điểm O(0; 0).
• Miền nghiệm của bất phương trình x + 4y + 9 ≥ 0 là nửa mặt phẳng (kể cả bờ d2: x + 4y + 9 = 0) chứa điểm O(0; 0).
• Miền nghiệm của bất phương trình x – 2y + 3 ≥ 0 là nửa mặt phẳng (kể cả bờ d1: x – y – 1 = 0) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(–1; –2), B(–5; –1) và C(5; 4).
Xét biểu thức F(x; y) = 3x – 2y – 4.
Tại A(–1; –2): F = 3.(–1) – 2.(–2) – 4 = –3.
Tại B(–5; –1): F = 3.(–5) – 2.(–1) – 4 = –17.
Tại C(5; 4): F = 3.5 – 2.4 – 4 = 3.
F(x; y) đạt giá trị nhỏ nhất bằng –17 tại B(–5; –1).
Vậy ta chọn phương án B.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.