Câu hỏi:

24/08/2022 5,692

Xét sự đồng biến, nghịch biến của hàm số \[f\left( x \right) = \frac{3}{x}\] trên khoảng (0; +∞). Khẳng định nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét hàm số \(y = f\left( x \right) = \frac{3}{x}\) trên khoảng (0; +∞).

Lấy x1, x2 tùy ý thuộc khoảng (0; +∞) sao cho x1 < x2, ta có:

f(x1) – f(x2) = \(\frac{3}{{{x_1}}} - \frac{3}{{{x_2}}} = \frac{{3{x_2} - 3{x_1}}}{{{x_1}{x_2}}} = \frac{{3\left( {{x_2} - {x_1}} \right)}}{{{x_1}{x_2}}}\).

Vì x1 < x2 nên x2 – x1 > 0 và vì x1, x2 (0; +∞) nên x1x2 > 0.

Từ đây ta suy ra \(\frac{{3\left( {{x_2} - {x_1}} \right)}}{{{x_1}{x_2}}} > 0\).

Do đó f(x1) – f(x2) > 0 hay f(x1) > f(x2).

Vì vậy hàm số đã cho nghịch biến trên khoảng (0; +∞).

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số y = f(x) có đồ thị như hình vẽ bên.

Media VietJack

Khẳng định nào sau đây đúng?

Xem đáp án » 24/08/2022 33,629

Câu 2:

Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).

Xem đáp án » 24/08/2022 2,909

Câu 3:

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{ - 1}}{{x - 1}},\,\,\,\,\,\,\,\,khi\,\,x \le 0\\\sqrt {x + 2} ,\,\,\,khi\,\,x > 0\end{array} \right.\). Tập xác định của hàm số là tập hợp nào sau đây?

Xem đáp án » 24/08/2022 1,215

Câu 4:

Cho hai đại lượng x và y phụ thuộc vào nhau theo các hệ thức dưới đây. Trường hợp nào thì y không phải là hàm số của x?

Xem đáp án » 24/08/2022 955

Câu 5:

Tập giá trị T của hàm số \(y = \sqrt {x + 3} \).

Xem đáp án » 24/08/2022 764

Câu 6:

Điểm nào sau đây thuộc đồ thị hàm số \[y = \frac{{2x - 1}}{{x\left( {3x - 4} \right)}}\]?

Xem đáp án » 24/08/2022 270
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua