Câu hỏi:
24/08/2022 6,781
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.

Biết f(c) = c. Giá trị của b là:
Cho hàm số f(x) = ax2 + bx + c (a, b, c ≠ 0) có đồ thị như hình vẽ bên.
Biết f(c) = c. Giá trị của b là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Quan sát đồ thị, ta thấy parabol cắt trục hoành tại đỉnh của parabol hay parabol cắt trục hoành tại một điểm duy nhất.
Nghĩa là, phương trình ax2 + bx + c = 0 có nghiệm kép.
Do đó ∆ = 0.
Suy ra b2 – 4ac = 0 (1)
Ta có f(c) = c.
Suy ra ac2 + bc + c = c.
Khi đó c(ac + b) = 0.
Vì vậy ac + b = 0 (vì c ≠ 0).
Do đó \(c = - \frac{b}{a}\) (vì a ≠ 0).
Thay \(c = - \frac{b}{a}\) vào (1) ta được: \({b^2} - 4.a.\left( { - \frac{b}{a}} \right) = 0\).
Khi đó b2 + 4b = 0 Û b(b + 4) = 0.
Vì vậy b = 0 hoặc b = –4.
Vì b ≠ 0 nên ta nhận b = –4.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có dạng y = ax2 + bx + c, với a = m, b = –2m, c = –m2 – 2 (m ≠ 0).
Suy ra b’ = –m.
∆ = b’2 – ac = (–m)2 – m.(–m2 – 2) = m3 + m2 + 2m.
Đỉnh S có tọa độ:
⦁ \[{x_S} = - \frac{{b'}}{a} = - \frac{{ - m}}{m} = 1\];
⦁ \({y_S} = - \frac{{\Delta '}}{a} = - \frac{{{m^3} + {m^2} + 2m}}{m} = - \frac{{m\left( {{m^2} + m + 2} \right)}}{m}\)
Do đó yS = –m2 – m – 2 (vì m ≠ 0).
Suy ra tọa độ đỉnh S(1; –m2 – m – 2).
Vì đỉnh S nằm trên đường thẳng y = x – 3 nên ta có:
–m2 – m – 2 = 1 – 3.
Suy ra –m2 – m = 0
Khi đó m = 0 (loại) hoặc m = –1 (thỏa mãn).
Vì vậy m ∈ (–3; 3).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có giá trị nhỏ nhất của hàm số bằng 4 tại x = 2.
Tức là đỉnh S(2; 4) và a > 0.
Suy ra 4 = a.22 + b.2 + c.
Do đó 4a + 2b + c = 4 (1)
Ta có xS = 2.
Suy ra \( - \frac{b}{{2a}} = 2\).
Do đó –b = 4a (2)
Đồ thị hàm số đi qua điểm A(0; 6).
Suy ra 6 = a.02 + b.0 + c.
Do đó c = 6 (3)
Thay (2), (3) vào (1), ta được: –b + 2b + 6 = 4.
Suy ra b = –2.
Với b = –2, thay vào (2) ta được 4a = 2.
Suy ra \(a = \frac{1}{2}\) (thỏa mãn a > 0).
Vì vậy ta có \(a = \frac{1}{2}\), b = –2, c = 6.
Khi đó P = abc = \(\frac{1}{2}.\left( { - 2} \right).6 = - 6\).
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.