Câu hỏi:

24/08/2022 5,451

Một chiếc cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\). Biết cổng có chiều rộng d = 5 m. Chiều cao h của cổng bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Gọi A và B là hai điểm ứng với chân cổng như hình vẽ.

Vì cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\) và có chiều rộng d = 5 (m) nên ta có: AB = 5.

Gọi I là trung điểm AB. Suy ra IA = IB = \(\frac{{AB}}{2} = \frac{5}{2}\) (m).

Hàm số đã cho có dạng y = ax2 + bx + c, với \(a = - \frac{1}{2}\), b = c = 0.

Vì b = 0 nên Oy là trục đối xứng của parabol.

Do đó trung điểm I của đoạn thẳng AB nằm trên Oy.

Khi đó điểm I có hoành độ bằng 0.

Vì IA = IB = \(\frac{5}{2}\) nên ta có \({x_A} = - \frac{5}{2},\,\,{x_B} = \frac{5}{2}\).

Với \({x_A} = - \frac{5}{2}\), ta có \({y_A} = - \frac{1}{2}.{\left( { - \frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).

Suy ra tọa độ \(A\left( { - \frac{5}{2}; - \frac{{25}}{8}} \right)\).

Với \({x_B} = \frac{5}{2}\), ta có \({y_B} = - \frac{1}{2}.{\left( {\frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).

Suy ra tọa độ \(B\left( {\frac{5}{2}; - \frac{{25}}{8}} \right)\).

Vì vậy chiều cao h của cổng là:

h = OI = |yA| = |yB| = \(\left| { - \frac{{25}}{8}} \right| = \frac{{25}}{8} = 3,125\) (m).

Vậy ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Hàm số đã cho có dạng y = ax2 + bx + c, với a = m, b = –2m, c = –m2 – 2 (m ≠ 0).

Suy ra b’ = –m.

∆ = b’2 – ac = (–m)2 – m.(–m2 – 2) = m3 + m2 + 2m.

Đỉnh S có tọa độ:

\[{x_S} = - \frac{{b'}}{a} = - \frac{{ - m}}{m} = 1\];

\({y_S} = - \frac{{\Delta '}}{a} = - \frac{{{m^3} + {m^2} + 2m}}{m} = - \frac{{m\left( {{m^2} + m + 2} \right)}}{m}\)

Do đó yS = –m2 – m – 2 (vì m ≠ 0).

Suy ra tọa độ đỉnh S(1; –m2 – m – 2).

Vì đỉnh S nằm trên đường thẳng y = x – 3 nên ta có:

–m2 – m – 2 = 1 – 3.

Suy ra –m2 – m = 0

Khi đó m = 0 (loại) hoặc m = –1 (thỏa mãn).

Vì vậy m (–3; 3).

Vậy ta chọn phương án C.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Quan sát đồ thị, ta thấy parabol cắt trục hoành tại đỉnh của parabol hay parabol cắt trục hoành tại một điểm duy nhất.

Nghĩa là, phương trình ax2 + bx + c = 0 có nghiệm kép.

Do đó ∆ = 0.

Suy ra b2 – 4ac = 0   (1)

Ta có f(c) = c.

Suy ra ac2 + bc + c = c.

Khi đó c(ac + b) = 0.

Vì vậy ac + b = 0 (vì c 0).

Do đó \(c = - \frac{b}{a}\) (vì a ≠ 0).

Thay \(c = - \frac{b}{a}\) vào (1) ta được: \({b^2} - 4.a.\left( { - \frac{b}{a}} \right) = 0\).

Khi đó b2 + 4b = 0 Û b(b + 4) = 0.

Vì vậy b = 0 hoặc b = –4.

Vì b ≠ 0 nên ta nhận b = –4.

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay