Câu hỏi:

13/07/2024 258

Giải các phương trình sau:

c) x+1x1+x1x+1=2x21

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) x+1x1+x1x+1=2x21

x+1x1+x1x+1=2x1x+1

ĐKXĐ:x+10x10x1x1  

Khi đó phương trình đã cho tương đương với:

x+12x1x+1+x12x1x+1=2x1x+1

x+12+x12x1x+1=2x1x+1

x2+2x+1+x22x+1x1x+1=2x1x+1

2x2+2x1x+1=2x1x+1

x2+1x1x+1=1x1x+1

Þ x2 +1 = 1

Û x2 = 0

Û x = 0 (TMĐK)

Vậy tập nghiệm của phương trình là S = {0}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) +) Xét ∆ABC có hai đường cao BE, CF và cắt nhau tại H nên suy ra H là trực tâm của tam giác ABC

Suy ra AH ^ BC (1)

+) Xét tam giác BEM vuông tại E có I là trung điểm của BM nên suy ra

IE=BI=IM=BM2

+) Xét tam giác IEM có IE = IM (cmt) nên tam giác IEM tại I.

Suy ra IEM^=IME^(2)

+) Xét tam giác ABC có FE // BC suy ra AEF^=AMB^  (đồng vị) (3)

+) Ta có AF.AB = AE.AC

AFAC=AEAB

+) Xét hai tam giác AEF và ABC có:

EAF^=BAC^A^chungAFAC=AEABcmt          ΔAEFΔABCc.g.c

AEF^=ABC^ (hai góc tương ứng) (4)

Từ (2), (3), (4) suy ra CED^=ABC^ .

+) Xét hai tam giác CED và CBA có:

ECD^=BCA^C^chungCED^=ABC^cmt       ΔCEDΔCBAg.g

CECB=CDCACECD=CBCA

+) Xét hai tam giác CEB và CDA có:

CECD=CBCAcmt          ECB^=DCA^C^chungΔCEBΔCDAc.g.c

Suy ra CDA^=CEB^  (hai góc tương ứng)

Nên CDA^=90°

Do đó  ADBC(5)

Từ (1) và (5) nên suy ra A, H, D thẳng hàng (đpcm).

 

Lời giải

Hướng dẫn giải

Cho ∆ABC nhọn (AB < AC) có đường cao BE, CF cắt nhau tại H. a) Chứng minh: ∆FHB và ∆EHC đồng dạng. (ảnh 1)

a) Xét tam giác ∆FHB và ∆EHC có:

FHB^=EHC^           HFB^=HEC^=90°ΔFHBΔEHCg.g

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP