Câu hỏi:

24/08/2022 4,892

Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Vì parabol có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) nên ta có \( - \frac{b}{{2a}} = \frac{1}{3}\).

Suy ra –3b = 2a.

Tức là, 2a + 3b = 0    (1)

Theo đề, ta có parabol đi qua điểm A(1; 3).

Suy ra 3 = a.12 + b.1 + 4.

Khi đó a + b + 4 = 3.

Do đó a + b = –1        (2)

Từ (1), (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + 3b = 0\\a + b = - 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 2\end{array} \right.\).

Vì vậy a + 2b = –3 + 2.2 = 1.

Vậy ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}16 - {x^2} \ge 0\\2023x + 2024m \ge 0\end{array} \right.\).

Tức là, \(\left\{ \begin{array}{l} - 4 \le x \le 4\\x \ge - \frac{{2024m}}{{2023}}\end{array} \right.\).

Do đó tập xác định của hàm số là D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\)

Ta có tập xác định của hàm số đã cho chỉ có đúng một phần tử.

Nghĩa là, D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\) chỉ có đúng một phần tử.

Û \(4 = - \frac{{2024m}}{{2023}}\) Û –2024m = 8092.

Do đó \(m = - \frac{{2023}}{{506}}\).

Vì vậy a = –2023 và b = 506 (vì a ℤ, b *).

Vậy a + b = –2023 + 506 = –1517.

Do đó ta chọn phương án A.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Gọi A và B là hai điểm ứng với chân cổng như hình vẽ.

Vì cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\) và có chiều rộng d = 5 (m) nên ta có: AB = 5.

Gọi I là trung điểm AB. Suy ra IA = IB = \(\frac{{AB}}{2} = \frac{5}{2}\) (m).

Hàm số đã cho có dạng y = ax2 + bx + c, với \(a = - \frac{1}{2}\), b = c = 0.

Vì b = 0 nên Oy là trục đối xứng của parabol.

Do đó trung điểm I của đoạn thẳng AB nằm trên Oy.

Khi đó điểm I có hoành độ bằng 0.

Vì IA = IB = \(\frac{5}{2}\) nên ta có \({x_A} = - \frac{5}{2},\,\,{x_B} = \frac{5}{2}\).

Với \({x_A} = - \frac{5}{2}\), ta có \({y_A} = - \frac{1}{2}.{\left( { - \frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).

Suy ra tọa độ \(A\left( { - \frac{5}{2}; - \frac{{25}}{8}} \right)\).

Với \({x_B} = \frac{5}{2}\), ta có \({y_B} = - \frac{1}{2}.{\left( {\frac{5}{2}} \right)^2} = - \frac{{25}}{8}\).

Suy ra tọa độ \(B\left( {\frac{5}{2}; - \frac{{25}}{8}} \right)\).

Vì vậy chiều cao h của cổng là:

h = OI = |yA| = |yB| = \(\left| { - \frac{{25}}{8}} \right| = \frac{{25}}{8} = 3,125\) (m).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay