Câu hỏi:
25/08/2022 377
Mặt phẳng không bị gạch trong hình bên (kể cả đường thẳng d1, không kể đường thẳng d2) biểu diễn miền nghiệm của một hệ bất phương trình bậc nhất hai ẩn. Điểm không thuộc miền nghiệm của hệ bất phương trình là:
Mặt phẳng không bị gạch trong hình bên (kể cả đường thẳng d1, không kể đường thẳng d2) biểu diễn miền nghiệm của một hệ bất phương trình bậc nhất hai ẩn. Điểm không thuộc miền nghiệm của hệ bất phương trình là:

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Dễ thấy điểm C và D thuộc phần mặt phẳng không bị gạch nên nó thuộc miền nghiệm của hệ bất phương trình.
Điểm A(2; 1) thuộc đường thẳng d1 nên nó thuộc miền nghiệm của hệ bất phương trình.
Vì điểm B(0; −1) nằm trên nửa mặt phẳng bị gạch nên B(0; −1) không là nghiệm của hệ bất phương trình trên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 2) và (−1; 1) nên ta có :
Vậy (d1): y = x + ⇔ −x + 2y = 3.
Thay điểm (0; 3) thuộc miền nghiệm vào (d1) ta được:
−0 + 2 . 3 > 3
Do đó ta có bất phương trình −x + 2y > 3 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (0; 1) và (1; 0) nên ta có :
Vậy (d2): y = −x + 1 ⇔ x + y − 1 = 0
Thay điểm (0; 3) thuộc miền nghiệm vào (d2) ta được:
0 + 3 − 1 > 0
Do đó ta có bất phương trình x + y − 1 > 0 (không kể đường thẳng d2) (2)
Xét đường thẳng d3: y = a3x + b3 đi qua điểm (0; 2) và (1; 2) nên ta có :
Vậy (d3): y = 2.
Thay điểm (0; 3) thuộc miền nghiệm vào (d3) ta được:
3 > 2
Do đó ta có bất phương trình y > 2 (không kể đường thẳng d3) (3)
Từ (1), (2), (3) ta có hệ bất phương trình .
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (2; 1) và (0; 0) nên ta có :
Vậy (d1): y = x ⇔ x − 2y = 0.
Thay điểm (0; 1) thuộc miền nghiệm vào (d1) ta được:
0 − 2 . 1 < 0
Do đó ta có bất phương trình x − 2y ≤ 0 (kể cả đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (−2; 0) và (0; −1) nên ta có :
Vậy (d2): y = − x − 1 ⇔ x + 2y + 2 = 0
Thay điểm (−1; 0) thuộc miền nghiệm vào (d2) ta được:
−1 + 2 . 0 + 2 > 0
Do đó ta có bất phương trình x + 2y + 2 ≥ 0 (kể cả đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình :
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.