8 câu Trắc nghiệm Toán 10 Cánh Diều Hệ bất phương trình bậc nhất hai ẩn (Thông hiểu) có đáp án
26 người thi tuần này 4.6 2 K lượt thi 8 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 0) và (0; −2) nên ta có :
Vậy (d1): y = 2x – 2 ⇔ 2x − y − 2 = 0.
Thay điểm (0; 2) thuộc miền nghiệm vào (d1) ta được:
2 . 0 − 2 − 2 < 0
Do đó ta có bất phương trình 2x − y − 2 < 0 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (1; 1) và (0; 1) nên ta có :
Vậy (d2): y = 1.
Thay điểm (0; 2) thuộc miền nghiệm vào (d2) ta được:
2 > 1
Do đó ta có bất phương trình y ≥ 1 (kể cả đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình cần tìm là: .
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (0; 0) và (2; 1) nên ta có :
Vậy (d1): y = x ⇔ x − y = 0.
Thay điểm (0; 1) thuộc miền nghiệm vào (d1) ta được:
. 0 − 1 < 0
Do đó ta có bất phương trình x − y < 0 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (−1; 2) và (−2; 1) nên ta có :
Vậy (d2): y = x + 3.
Thay điểm (0; 2) thuộc miền nghiệm vào (d2) ta được:
2 < 0 + 3
Do đó ta có bất phương trình y < x + 3 (không kể đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình .
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Thay (3; −1) vào bất phương trình (1) ta được:
3 − 5 . (−1) > 0 ⇔ 8 > 0 (luôn đúng)
Thay (3; −1) vào bất phương trình (2) ta được:
3 − 1 − 1 < 0 ⇔ 2 < 0 (vô lí)
Vậy điểm A thuộc miền nghiệm của (1) nhưng không thuộc miền nghiệm của (2).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 2) và (−1; 1) nên ta có :
Vậy (d1): y = x + ⇔ −x + 2y = 3.
Thay điểm (0; 3) thuộc miền nghiệm vào (d1) ta được:
−0 + 2 . 3 > 3
Do đó ta có bất phương trình −x + 2y > 3 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (0; 1) và (1; 0) nên ta có :
Vậy (d2): y = −x + 1 ⇔ x + y − 1 = 0
Thay điểm (0; 3) thuộc miền nghiệm vào (d2) ta được:
0 + 3 − 1 > 0
Do đó ta có bất phương trình x + y − 1 > 0 (không kể đường thẳng d2) (2)
Xét đường thẳng d3: y = a3x + b3 đi qua điểm (0; 2) và (1; 2) nên ta có :
Vậy (d3): y = 2.
Thay điểm (0; 3) thuộc miền nghiệm vào (d3) ta được:
3 > 2
Do đó ta có bất phương trình y > 2 (không kể đường thẳng d3) (3)
Từ (1), (2), (3) ta có hệ bất phương trình .
Câu 5
B. (0; 2);
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Điểm (2; 0) nằm trên mặt phẳng không bị gạch nên (2; 0) thuộc miền nghiệm của hệ bất phương trình trên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






