Miền nghiệm của hệ bất phương trình nào sau đây được biểu diễn bởi mặt phẳng không bị gạch trong hình vẽ bên (kể cả đường thẳng d2 và không kể đường thẳng d1)?
Miền nghiệm của hệ bất phương trình nào sau đây được biểu diễn bởi mặt phẳng không bị gạch trong hình vẽ bên (kể cả đường thẳng d2 và không kể đường thẳng d1)?

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 0) và (0; −2) nên ta có :
Vậy (d1): y = 2x – 2 ⇔ 2x − y − 2 = 0.
Thay điểm (0; 2) thuộc miền nghiệm vào (d1) ta được:
2 . 0 − 2 − 2 < 0
Do đó ta có bất phương trình 2x − y − 2 < 0 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (1; 1) và (0; 1) nên ta có :
Vậy (d2): y = 1.
Thay điểm (0; 2) thuộc miền nghiệm vào (d2) ta được:
2 > 1
Do đó ta có bất phương trình y ≥ 1 (kể cả đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình cần tìm là: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 2) và (−1; 1) nên ta có :
Vậy (d1): y = x + ⇔ −x + 2y = 3.
Thay điểm (0; 3) thuộc miền nghiệm vào (d1) ta được:
−0 + 2 . 3 > 3
Do đó ta có bất phương trình −x + 2y > 3 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (0; 1) và (1; 0) nên ta có :
Vậy (d2): y = −x + 1 ⇔ x + y − 1 = 0
Thay điểm (0; 3) thuộc miền nghiệm vào (d2) ta được:
0 + 3 − 1 > 0
Do đó ta có bất phương trình x + y − 1 > 0 (không kể đường thẳng d2) (2)
Xét đường thẳng d3: y = a3x + b3 đi qua điểm (0; 2) và (1; 2) nên ta có :
Vậy (d3): y = 2.
Thay điểm (0; 3) thuộc miền nghiệm vào (d3) ta được:
3 > 2
Do đó ta có bất phương trình y > 2 (không kể đường thẳng d3) (3)
Từ (1), (2), (3) ta có hệ bất phương trình .
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (2; 1) và (0; 0) nên ta có :
Vậy (d1): y = x ⇔ x − 2y = 0.
Thay điểm (0; 1) thuộc miền nghiệm vào (d1) ta được:
0 − 2 . 1 < 0
Do đó ta có bất phương trình x − 2y ≤ 0 (kể cả đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (−2; 0) và (0; −1) nên ta có :
Vậy (d2): y = − x − 1 ⇔ x + 2y + 2 = 0
Thay điểm (−1; 0) thuộc miền nghiệm vào (d2) ta được:
−1 + 2 . 0 + 2 > 0
Do đó ta có bất phương trình x + 2y + 2 ≥ 0 (kể cả đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình :
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.