Câu hỏi:

11/07/2024 8,400

Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol. Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là  25 m( Bỏ qua độ dày của cổng).

1)  Trong mặt phẳng tọa độ Oxy gọi Parabo   P:y=ax2 với a<0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a=-1.

2) Hỏi xe tải có đi qua cổng được không? Tại sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
1) Giả sử trên mặt phẳng tọa độ, độ dài các đoạn thẳng được tính theo đơn vị mét. Do khoảng cách giữa hai chân cổng là 4 m nên  MA=NA=2m. Theo giả thiết ta có  OM=ON=25, áp dụng định lý Pitago ta tính được: OA=4 vậy  M2;4,N2;4. Do M(2;-4)  thuộc parabol nên tọa độ điểm M thỏa mãn phương trình:  P:y=ax2 hay 4=a.22a=1 và  P:y=x2.
Media VietJack

2)  Để đáp ứng chiều cao trước hết xe tải phải đi vào chính giữa cổng.

Xét đường thẳng  d:y=32 (ứng với chiều cao của xe). Đường thẳng này cắt Parabol tại 2 điểm có tọa độ thỏa mãn hệ: y=x2y=32           

x2=32y=32x=322;y=32x=322;y=32

suy ra tọa độ hai giao điểm là T322;32;H322;32HT=32>2,4. Vậy xe tải có thể đi qua cổng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP