Câu hỏi:

11/07/2024 1,020 Lưu

Trong đợt dịch Covid-19, nhân viên y tế của một trường THCS đã mua một số hộp khẩu trang gồm 2 loại. Biết nếu mua 6 hộp loại thứ nhất và 3 hộp loại thứ hai thì hết 2 280 000 đồng; nếu mua 3 hộp loại thứ nhất và 7 hộp loại thứ hai thì hết 2 680 000 đồng. Tính giá tiền mỗi loại hộp khẩu trang.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi giá tiền hộp khẩu trang loại thứ nhất là x (đồng) (x > 0)

Giá tiền hộp khẩu trang loại thứ hai là y (đồng) (y > 0)

Nếu mua 6 hộp loại thứ nhất và 3 hộp loại thứ hai thì hết 2 280 000 đồng nên ta có phương trình 6x + 3y = 2 280 000 (1)

Nếu mua 3 hộp loại thứ nhất và 7 hộp loại thứ hai thì hết 2 680 000 đồng nên ta có phương trình 3x + 7y = 2 680 000 (2)

Từ (1) và (2) ta có hệ phương trình:

 6x+3y=2  280  0003x+7y=2  680  000

 

Û  6x+3y=2  280  0006x+14y=5  360  000

Û  6x+3y=2  280  00011y=3  080  000

Û  y=280  0006x+3.280  000=2  280  000

Û  y=280  000  (TM)x=240  000  (TM)

Vậy giá tiền hộp khẩu trang loại thứ nhất là 240 000 đồng và loại thứ hai là 280 000 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi D là trung điểm của AB. Đường thẳng DC cắt đường tròn tại E (E khác C). Chứng minh: a) Tứ giác ABOC nội tiếp. b) DB2 = DE.DC c)   (ảnh 1)

a) Ta có  ABO^= 90° (AB là tiếp tuyến đường tròn tâm O).

 ACO^= 90° (AC là tiếp tuyến đường tròn tâm O).

Do đó  ABO^ + ACO^= 180°.

Vậy tứ giác ABOC nội tiếp.

b) Xét ∆DBE và ∆DCB có:

 DBE^=DCB^ (hai góc cùng chắn cung BE).

 BDC^ chung.

Do đó ∆DBE  ∆DCB (g.g)

Suy ra  DBDE=DCDB

Do đó DB2 = DE.DC (đpcm).

c) Ta có DA = DB (D là trung điểm AB)

Nên DA2 = DE.DC

Suy ra  DADE=DCDA

Xét ∆DAC  DADE=DCDA ∆DEA có:

 DADE=DCDA (cmt)

 ADC^ là góc chung

Do đó ∆DAC  ∆DEA (c.g.c)

Suy ra  DEA^=DAC^ (hai góc tương ứng).

 

Lời giải

a) x2 + 2(m + 3)x + 2m – 11 = 0 (a = 1, b = 2(m + 3), c = 2m – 11)

∆ = b2 – 4ac = [2(m + 3)]2 – 4.(2m – 11)

= 4m2 + 16m + 80 = m2 + 4m + 4 + 16

= (m + 2)2 + 16 > 0

Vì ∆ > 0 nên phương trình có 2 nghiệm phân biệt.

b) Theo định lý Vi-et, ta có:

S = x1 + x2ba= −2(m + 3);

P = x1x2ca= 2m – 11.

Ta có:  1x1+1x2= 2 Û  x2+x1x1x2=2 

Û  2(m+3)2m11= 2

Û −2m – 6 = 2(2m – 11)

Û 6m – 16 = 2 Û m =  83.

Vậy để phương trình (1) có hai nghiệm thỏa mãn yêu cầu bài toán thì m =  83.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP