Câu hỏi:
13/07/2024 163Cho phương trình (m là tham số)
Giả sử là các nghiệm của phương trình trên. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình (1) có hai nghiệm khi và chỉ khi
(luôn đúng với mọi m)
Nên phương trình (1) luôn có 2 nghiệm phân biệt
Khi đó, áp dụng định lý Vi-et ta có :
Th1:
Th2: . Khi đó phương trình (*) có :
Để tồn tại giá trị lớn nhất và giá trị nhỏ nhất của biểu thức thì phương trình (*) phải có nghiệm
Khi đó ta có :
Do đó GTNN của biểu thức bằng và GTLN của biểu thức bằng 2.
Với ta có :
Với S = 2 ta có :
Vậy GTNN của bằng đạt được khi m = -2
Và GTLN của biểu thức bằng 2 đạt được khi m = 0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
b) Cho hai đường thẳng và
Hãy cho biết vị trí tương đối của hai đường thẳng trên ? Vì sao ?
Câu 7:
Cho tam giác ABC có ba góc nhọn, , Vẽ các đường cao BD, CE của tam giác ABC. Gọi H là giao điểm của BD và
a) Chứng minh ADHE là tứ giác nội tiếp
về câu hỏi!