Câu hỏi:

12/07/2024 6,857

Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi tổ hợp chập k của n phần tử đó là:

A. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.

B. Một tập con gồm k phần tử được lấy ra từ n phần tử của A.

C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.

D. Tất cả tập con gồm k phần tử được lấy ra từ n phần tử của A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là B

Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.

Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: \(C_n^2 = \frac{{n!}}{{2!\left( {n - 2} \right)!}}\).

Theo đề, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78.

Tức là, \[\frac{{n!}}{{2!\left( {n - 2} \right)!}} = 78\].

Suy ra \[\frac{{\left( {n - 2} \right)!.\left( {n - 1} \right).n}}{{2.\left( {n - 2} \right)!}} = 78\].

Khi đó \[\frac{{\left( {n - 1} \right).n}}{2} = 78\].

Do đó n2 – n = 156.

Vì vậy n2 – n – 156 = 0.

Suy ra n = 13 hoặc n = –12.

Vì n > 1 nên ta nhận n = 13.

Vậy n = 13 thỏa mãn yêu cầu bài toán.

Lời giải

Lời giải

Số đường chéo của đa giác lồi n đỉnh là một cặp đỉnh (không tính n cạnh) được chọn trong n đỉnh của đa giác lồi nên ta có \(C_n^2 - n = \frac{{n!}}{{2!.\left( {n - 2} \right)!}} - n\).

Theo đề, ta có số đường chéo của đa giác đó là 170.

Tức là, \(\frac{{n!}}{{2!.\left( {n - 2} \right)!}} - n = 170\).

Suy ra \(\frac{{\left( {n - 2} \right)!.\left( {n - 1} \right).n}}{{2.\left( {n - 2} \right)!}} - n = 170\).

Khi đó (n – 1).n – 2n = 340.

Vì vậy n2 – 3n – 340 = 0.

Suy ra n = 20 hoặc n = –17.

Vì n > 3 nên ta nhận n = 20.

Vậy n = 20 là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay