Câu hỏi:
12/07/2024 3,374Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: \(C_n^2 = \frac{{n!}}{{2!\left( {n - 2} \right)!}}\).
Theo đề, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78.
Tức là, \[\frac{{n!}}{{2!\left( {n - 2} \right)!}} = 78\].
Suy ra \[\frac{{\left( {n - 2} \right)!.\left( {n - 1} \right).n}}{{2.\left( {n - 2} \right)!}} = 78\].
Khi đó \[\frac{{\left( {n - 1} \right).n}}{2} = 78\].
Do đó n2 – n = 156.
Vì vậy n2 – n – 156 = 0.
Suy ra n = 13 hoặc n = –12.
Vì n > 1 nên ta nhận n = 13.
Vậy n = 13 thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi tổ hợp chập k của n phần tử đó là:
A. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
B. Một tập con gồm k phần tử được lấy ra từ n phần tử của A.
C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
D. Tất cả tập con gồm k phần tử được lấy ra từ n phần tử của A.
Câu 2:
Câu 3:
Chứng minh rằng:
\(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với 0 ≤ k ≤ n.
Câu 4:
Câu 5:
Câu 6:
Chứng minh rằng:
\(kC_n^k = nC_{n - 1}^{k - 1}\) với 1 ≤ k ≤ n.
về câu hỏi!