Câu hỏi:
12/07/2024 535
Trong các phát biểu sau, phát biểu nào sai?
A. \(C_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 0 ≤ k ≤ n.
B. \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 1 ≤ k ≤ n.
C. Pn = n! với n là số nguyên dương.
D. (a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5.
Trong các phát biểu sau, phát biểu nào sai?
A. \(C_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 0 ≤ k ≤ n.
B. \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 1 ≤ k ≤ n.
C. Pn = n! với n là số nguyên dương.
D. (a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5.
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 5 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là A
⦁ \(C_n^k = \frac{{n!}}{{k!.\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 0 ≤ k ≤ n.
Do đó phương án A sai.
⦁ \(C_n^k = \frac{{A_n^k}}{{k!}} = \frac{{n!}}{{k!.\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 1 ≤ k ≤ n.
Suy ra \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\), với k, n là các số tự nhiên, 1 ≤ k ≤ n.
Do đó phương án B đúng.
⦁ Pn = n! với n là số nguyên dương.
Do đó phương án C đúng.
⦁ Công thức khai triển nhị thức Newton của biểu thức (a – b)5 là:
(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5.
Do đó phương án D đúng.
Vậy ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là A
Mỗi cách chọn 3 điểm trong 20 điểm phân biệt đã cho là một tổ hợp chập 3 của 20.
Số cách chọn 3 điểm trong 20 điểm đã cho là \[C_{20}^3 = 1140\].
Vậy ta chọn phương án A.
Lời giải
Lời giải
Ta có: (2x + 3)5 = (2x)5 + 5.(2x)4.3 + 10.(2x)3.32 + 10.(2x)2.33 + 5.(2x)1.34 + 35
= 32x5 + 240x4 + 720x3 + 1 080x2 + 810x + 243
Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là 240x4.
Vậy hệ số của x4 trong khai triển biểu thức (2x + 3)5 là 240.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.