Câu hỏi:

12/07/2024 526

Trong các phát biểu sau, phát biểu nào sai?

A. \(C_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 0 ≤ k ≤ n.

B. \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 1 ≤ k ≤ n.

C. Pn = n! với n là số nguyên dương.

D. (a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là A

\(C_n^k = \frac{{n!}}{{k!.\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 0 ≤ k ≤ n.

Do đó phương án A sai.

\(C_n^k = \frac{{A_n^k}}{{k!}} = \frac{{n!}}{{k!.\left( {n - k} \right)!}}\) với k, n là các số tự nhiên, 1 ≤ k ≤ n.

Suy ra \(A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\), với k, n là các số tự nhiên, 1 ≤ k ≤ n.

Do đó phương án B đúng.

Pn = n! với n là số nguyên dương.

Do đó phương án C đúng.

Công thức khai triển nhị thức Newton của biểu thức (a – b)5 là:

(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5.

Do đó phương án D đúng.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là A

Mỗi cách chọn 3 điểm trong 20 điểm phân biệt đã cho là một tổ hợp chập 3 của 20.

Số cách chọn 3 điểm trong 20 điểm đã cho là \[C_{20}^3 = 1140\].

Vậy ta chọn phương án A.

Lời giải

Lời giải

Ta có: (2x + 3)5  = (2x)5 + 5.(2x)4.3 + 10.(2x)3.32 + 10.(2x)2.33 + 5.(2x)1.34 + 35

= 32x5 + 240x4 + 720x3 + 1 080x2 + 810x + 243

Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là 240x4.

Vậy hệ số của x4 trong khai triển biểu thức (2x + 3)5 là 240.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay