Câu hỏi:

09/09/2022 634 Lưu

Trong các tập hợp sau, tập hợp nào không phải là tập hợp rỗng?

A. A = {x ℕ | x2 + x + 3 = 0};
B. B = {x ℕ | x2 + 6x + 5 = 0};
C. C = {x ℕ* | x(x2 – 5) = 0};
D. D = {x ℕ* | x2 – 9x + 20 = 0}.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

A. Ta có:

Phương trình x2 + x + 3 = 0 vô nghiệm.

Tập hợp A không có phần tử nào thỏa mãn.

C = .

B. Ta có:

x2 + 6x + 5 = 0 x=1x=5

Vì x ℕ* nên không có phần tử nào thỏa mãn tập hợp trên.

B = .

C. Ta có:

x(x2 – 5) = 0 x=0x2 5=0x=0x=5x=5 .

Vì x ℕ nên không có phần tử nào thỏa mãn tập hợp trên.

C = .

D. Ta có:

x2 – 9x + 20 = 0 x=4x=5 .

Vì x ℕ* nên hai nghiệm x = 4 và x = 5 đều thỏa mãn.

Do đó tập hợp D có hai phần tử.

D = {4; 5}.

Vậy chỉ có tập hợp D không phải là tập hợp rỗng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

A. Xét mệnh đề P Q: “Nếu x là số nguyên dương thì x2 là số nguyên dương”.

Mệnh đề này đúng vì bình phương của một số nguyên dương là một số nguyên dương. (1)

Xét mệnh đề đảo Q P: “Nếu x2 là số nguyên dương thì x là số nguyên dương”.

Mệnh đề này sai do nếu x2 là số nguyên dương thì x có thể là số thực dương hoặc số thực âm. (2)

Từ (1) và (2) nên mệnh đề ở đây A sai.

B. Mệnh đề Q P được phát biểu như sau: “Nếu x2 là số nguyên dương thì x là số nguyên dương”.

Mệnh đề này sai do nếu x2 là số nguyên dương thì x có thể là số thực dương hoặc số thực âm.

C. Ta có mệnh đề Q¯ : “x2 không phải là số nguyên dương”.

Mệnh đề P Q¯  được phát biểu như sau: “Nếu x là số nguyên dương thì x2 không phải là số nguyên dương”.

Vì với x nguyên dương thì x2 luôn luôn dương nên mệnh đề trên sai.

D. Mệnh đề P Q được phát biểu như sau: “Nếu x là số nguyên dương thì x2 là số nguyên dương”.

Mệnh đề này đúng vì bình phương của một số nguyên dương là một số nguyên dương.

Câu 2

A. A = {x ℤ | x2 – 9 = 0};
B. B = {x ℝ | x2 – 6 = 0};

C. C = {x ℝ | x2 + 1 = 0};

D. D = {x ℝ | x2 – 4x + 3 = 0}.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

A. Ta có:

x2 – 9 = 0 x2 = 9  x=3x=3

Vì x ℤ nên hai nghiệm trên đều thỏa mãn.

A = {-3; 3}.

B. Ta có:

x2 – 6 = 0 x2 = 6  x=6x=6

Vì x ℝ nên hai nghiệm trên đều thỏa mãn.

B = { -6;6}.

C. Ta có:

Phương trình x2 + 1 = 0 vô nghiệm.

Tập hợp C không có phần tử nào thỏa mãn.

C = .

D. Ta có:

x2 – 4x + 3 = 0 x=1x=3 .

Vì x ℝ nên hai nghiệm trên đều thỏa mãn.

B = {1; 3}.

Vậy C là tập hợp rỗng.

Câu 3

A. x2 + x – 1 > 0;
B. 4 < 5;
C. x là số tự nhiên;
D. x + 6 = 12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 là điều kiện cần để hai đường thẳng đó song song với nhau;

B. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 tương đương với để hai đường thẳng đó song song với nhau;

C. Trong một mặt phẳng, hai đường thẳng song song với nhau là điều kiện đủ để hai đường thẳng đó cùng song song với đường thẳng thứ 3;
D. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 là điều kiện đủ để hai đường thẳng đó song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. “Nếu (-3) > (-2) thì (-3)2 > (-2)2”;
B. “Nếu 3 là số lẻ thì 3 chia hết cho 2”; 
C. “Nếu 15 chia hết cho 9 thì 18 chia hết cho 3”;
D. “Nếu 3 chia hết cho 1 và chính nó thì 3 là số nguyên tố”.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP