Câu hỏi:

13/07/2024 1,247 Lưu

Cho ΔABC có ba góc nhọn (AB<AC), dựng AH vuông góc với BC tại điểm H. Gọi M, N theo thứ tự là hình chiếu vuông góc của H trên AB, AC. Đường thẳng MN cắt đường thẳng BC tại điểm D. Trên nửa mặt phẳng bờ CD chứa điểm A, vẽ nửa đường tròn đường kính CD. Qua B kẻ đường thẳng vuông góc với CD, cắt nửa đường tròn trên tại điểm E.

a. Chứng minh tứ giác AMHN là tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có ba góc nhọn (AB<AC), dựng AH vuông góc với BC tại điểm H. Gọi M, N theo thứ tự là hình chiếu vuông góc của H (ảnh 1)

a. Vì M, N lần lượt là hình chiếu vuông góc của H trên AB, AC AMH^=ANH^=90°.

Xét tứ giác AMHN có: AMH^+ANH^=90°+90°=180°.

Do đó tứ giác AMHN nội tiếp đường tròn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP