Câu hỏi:

13/07/2024 5,611

Cho tam giác nhọn ABC(AB<AC). Đường tròn tâm (O) đường kính BC cắt AC, AB lần lượt tại D và E. H là giao điểm của BD và CE, K là giao điểm của DE và AH, I là giao điểm của AH và BC, M là trung điểm của AH. Chứng minh rằng: MD2=MK.MI

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác nhọn ABC(AB<AC). Đường tròn tâm (O) đường kính BC cắt AC, AB lần lượt tại D và E. (ảnh 1)

Ta có BDC^,BEC^ là các góc nội tiếp chắn nửa đường tròn tâm O nên BDC^=BEC^=90°

Mà BD và CE cắt nhau tại H nên ta suy ra H là trực tâm của tam giác ABC.

Suy ra AIC^=90°

Ta có HDC^+HIC^=180° nên CDHI là tứ giác nội tiếp đường tròn đường kính HC.

Suy ra HID^=HCD^ (góc nội tiếp cùng chắn cung DH của đường tròn đường kính HC).

Hay MID^=HCD^

Tương tự, ta chứng minh được tứ giác AEIH nội tiếp đường tròn tâm M

(MA=MD=MH).

MAD^=MDA^ (vì MD=MA) và EDH^=EAH^

 (cùng chắn cung EH của đường tròn tâm M)

Vậy MDK^=ADH^(MDA^+EDH^)=90°(MAD^+EAH^)=90°EAD^=HCD^

MID^=MDK^

Xét 2 tam giác MDK và MID có:

M^ là góc chung,

MID^=MDK^

ΔMDKΔMID(g.g)

MDMK=MIMDMD2=MK.MI(đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP