Câu hỏi:
12/09/2022 1,312Một văn phòng A có 15 nhân viên nam và 20 nhân viên nữ. Đề khảo sát mức độ hài lòng của nhân viên thông qua hình thức phỏng vấn, người ta lần lượt ghi tên của từng nhân viên vào 35 mẩu giấy giống nhau, từ đó chọn ngẫu nhiên 5 mẩu giấy.
a) Tính xác suất của các biến cố:
A: “Trong 5 người được chọn có 2 nam, 3 nữ”,
B: “Có nhiều nhân viên nữ được chọn hơn nhân viên nam”;
C “Có ít nhất một người được chọn là nữ”.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là: n(Ω) =
a) A: “Trong 5 người được chọn có 2 nam, 3 nữ”
Ta chọn 2 nam trong 15 nam và 3 nữ trong 20 nữ nên số phần tử của biến cố A là:
n(A) =
xác suất của biến cố A là: P(A) = .
B: “Có nhiều nhân viên nữ được chọn hơn nhân viên nam”
Số nhân viên nữ được chọn nhiều hơn nhân viên nam nên ta có các trường hợp
Trường hợp 1. Chọn ra 3 nhân viên nữ và 2 nhân viên nam
Số cách chọn là:
Trường hợp 2. Chọn được 4 nhân viên nữ và 1 nhân viên nam
Số cách chọn là:
Trường hợp 3. Chọn được 5 nhân viên nữ và 0 nhân viên nam
Số cách chọn là:
Số phần tử của biến cố B là: n(B) = + +
Xác suất của biến cố B là: P(B) =
C “Có ít nhất một người được chọn là nữ”.
Gọi biến cố đối của biến cố C là : “không có người nữ nào được chọn”
Vậy 5 người được chọn đều là nam. Số phần tử của biến cố là: n() =
Xác suất của biến cố là: P() =
Xác suất cả biến cố C là: P(C) = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp kín có 1 quả bóng xanh và 5 quả bóng đỏ có kích thước và khối lượng bằng nhau. Hỏi Dũng cần lấy ra từ hộp ít nhất bao nhiêu quả bóng để xác suất lấy được quả bóng xanh lớn hơn 0,5?
Câu 2:
Một hội đồng có đúng 1 người là nữ. Nếu chọn ngẫu nhiên 2 người từ hội đồng thì xác suất cả hai người đều là nam là 0,8.
a) Chọn ngẫu nhiên 2 người từ hội đồng, tính xác suất của biến cố có 1 người nữ trong 2 người đó.
Câu 3:
Bốn đội bóng A, B, C, D lọt vào vòng bán kết của một giải đấu. Ban tổ chức bốc thăm chia 4 đội này thành 2 cặp đầu một cách ngẫu nhiên. Tính xác suất của biến cố hai đội A và B đấu với nhau ở trận bán kết.
Câu 4:
Gieo một con xúc xắc 4 mặt cân đối và đồng chất ba lần. Tính xác suất của các biến cố:
a) “Tổng các số xuất hiện ở đỉnh phía trên của con xúc xắc trong ba lần gieo lớn hơn 2”;
Câu 5:
Chọn ngẫu nhiên 10 số tự nhiên từ dãy các số tự nhiên từ 1 đến 100. Xác định biến cố đối của các biến cố sau:
A: “Có ít nhất 3 số lẻ trong 10 số được chọn”;
B: “Tất cả 10 số được chọn đều là số chẵn”;
C: “Có không quá 5 số chẵn trong 10 số được chọn”.
về câu hỏi!