Câu hỏi:

14/09/2022 1,012 Lưu

Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O;R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MQ). Dây cung PQ cắt OH và OM lần lượt tại I và K.

a. Chứng minh rằng tứ giác OMHQ nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. (ảnh 1)

1. Chứng minh rằng tứ giác OMHQ nội tiếp.

 OHM^=90°OHd; OQM^=90° (MQ là tiếp tuyến của (O) tại  Q).

Vậy tứ giác OMHQ nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP