Câu hỏi:

12/07/2024 555 Lưu

c) Kẻ MP vuông góc với BN tại P. Xác định vị trí của M sao cho MQ.AN+MP.BN đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Ta có MQ.AN+MP.BN=2SMAN+2SMBN=2SAMBN=AB.MN.

MN2R (Trong các dây của một đường tròn, dây lớn nhất là đường kính)

MQ.AN+MP.BN2AB.R (không đổi).

Dấu "=" xảy ra  M là điểm chính giữa của cung lớn AB.

Vậy MQ.AN+MP.BN lớn nhất bằng 2.AB.R, đạt được khi M là điểm chính giữa của cung lớn AB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP