Câu hỏi:

12/07/2024 3,394 Lưu

2. Chứng minh: MN2=NF.NA và MN=NH

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2. * Ta có: M1^=E1^ (so le trong, AE//MO) và A1^=E1^(cùng bằng  12AF)

 M1^=A1^.    

Xét ΔNMF ΔNAM có: MNA^ chung; M1^=A1^

ΔNMFΔNAMg.gNMNA=NFNMNM2=NF.NA.

* Có MA=MB (tính chất 2 tiếp tuyến cắt nhau) và OA=OB=R 

 MOlà đường trung trực của AB 

 AH  MO và HA = HB.

Xét ΔMAF ΔMEA có: AME^ chung; E1^=A1^

ΔMAFΔMEAg.gAMME=MFMAMA2=MF.ME.

Áp dụng hệ thức lượng vào  vuông MAO có: MA2=MH.MO.

Do đó: ME.MF=MH.MOMEMH=MOMFMEMH=MOMF

 ΔMFHΔMOEc.g.cE2^=H1^.

BAE^  là góc vuông nội tiếp (O) nên E,O,B thẳng hàng.

E2^=A2^(vì =12EB)

A2^=H1^N1^+H1^=N1^+A2^=90°HFNA.

Áp dụng hệ thức lượng vào  vuông NHA có:

NH2=NF.NANH2=NM2NM=NH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP