Câu hỏi:

12/07/2024 1,502 Lưu

b) Vẽ cát tuyến MCD không đi qua tâm O của đường tròn đó sao cho điểm C nằm giữa hai điểm M và D. Tiếp tuyến tại điểm C và điểm D của đường tròn (O) cắt nhau tại điểm N. Gọi H là giao điểm của AB và MO,  K là giao điểm của CD và QN. Chứng minh rằng OH.OM=OK.ON=R2;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Ta có MA=MB (tính chất hai tiếp tuyến cắt nhau);

Lại có OA=OB=ROM là đường trung trực của đoạn thẳng AB

  OMAB tại H.

Xét ΔAOM vuông tại A, đường cao AH:

Theo hệ thức về cạnh góc vuông và đường cao trong tam giác vuông ta có: OH.OM=OA2=R2     1

Chứng minh tương tự ta được : OK.ON=R2 (2);

Từ (1) và (2) suy ra OH.OM=OK.ON=R2(đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP