Câu hỏi:

12/07/2024 4,432 Lưu

c) Gọi I là tâm đường tròn ngoại tiếp tứ giác FCDE, chứng minh rằng IC là tiếp tuyến của đường tròn (O)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Gọi I là trung điểm của DF

ΔDCF vuông tại C có I là trung điểm của DF nên IC=IF

Suy ra ΔICF cân tại IICF^=IFC^ (1)

Vì tứ giác FCDE nội tiếp nên IFC^=CED^ (hai góc nội tiếp cùng chắn cung DC) (2)

Lại có CED^=CBO^ (hai góc nội tiếp cùng chắn cung AC của (O)) và OBC^=OCB^ (do ΔOBC cân tại O) (3)

Từ (1), (2) và 3ICF^=OCB^

ICF^+ICD^=90o 

Do đó OCB^+ICD^=90o.

Vậy IC là tiếp tuyến của đường tròn tâm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). (ảnh 1)

a) Ta có hai góc ACB^=AEB^=900 (hai góc nội tiếp chắn nửa đường tròn).

Xét tứ giác FCDE  FCD^=FED^=900FCD^+FED^=1800

Suy ra tứ giác FCDE nội tiếp đường tròn đường kính DF.

Lời giải

a) Xét các tam giác AHC và BHC vuông tại H, ta có :

tanA=CHAHAH=CHtanAtanB=CHBHBH=CHtanB

Suy ra: AB=AH+BH=CHtanA+CHtanB=CH.1tanA+1tanB=CH.tanA+tanBtanA.tanB.

CH=AB.tanA.tanBtanA+tanB=762.tan6°.tan4°tan6°+tan4°32m

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP